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ABSTRACT

This report summarizes our research accomplishments for Contract F33615-97-1-1020, “Fea-
ture Extraction using Attributed Scattering Center Models for Model-Based Automatic
Target Recognition.” The primary research goal of the program was to develop funda-
mental understanding and advanced signal processing techniques for feature extraction to
support feature-based automatic target recognition (ATR) systems employing synthetic
aperture radar. This report summarizes the major technical accomplishments that were
realized. We developed a set of attributed scattering center models for SAR ATR whose
model primitives that balance between modeling fidelity and estimation accuracy. We de-
veloped computationally-efficient algorithms for automatic feature extraction of attributed
scattering center features from complex SAR image-domain data. We analyzed feature un-
certainty and derived analytical uncertainty bounds. We implemented stand-alone match
scoring methods to evaluate target discriminability and feature estimation tradeoffs. We
developed STAP/SFAP-Based Adaptive Antennas. We developed techniques for under-
standing rough surface scattering. We developed ultrawide bandwidth antennas, and slot
array antennas with wide scan angles. Finally, we increased the US technology base by
training of graduate students and by disseminating research through technical publications
and presentations.
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1. INTRODUCTION

This report summarizes our research accomplishments for Contract F33615-97-1-1020, “Fea-
ture Extraction using Attributed Scattering Center Models for Model-Based Automatic Tar-
get Recognition.” The contract was originally funded by the DARPA Image Understanding
Program, and later by DARPA under the MSTAR Enhancements Program (MEP). From
February 1997 through April 2002 the project was funded to carry out research on fea-
ture extraction using attributed scattering center models for model-based automatic target
recognition (ATR). Since April 2002, the project has received funding from Air Force Re-
search Laboratory (AFRL) with a primary focus on funding US graduate students to pursue
graduate research on advanced topics related to automatic target recognition.

The primary research goal of the program was to develop fundamental understanding and
advanced signal processing techniques for feature extraction to support feature-based au-
tomatic target recognition (ATR) systems. Our focus was on synthetic aperture radar
(SAR) ATR, although our methods also apply to non-SAR radar ATR, such as high range
resolution radar ATR. Our four primary research objectives have been:

1. Develop and validate physically-based models for scattering that can be used for
model-based ATR.

2. Develop practical feature estimation algorithms.

3. Measure efficacy of these features for improvements to SAR ATR performance.

4. Enhance the US technology base by training US graduate students in topics related
to sensor exploitation systems.

Significant accomplishments of this research program are summarized below:

Developed a set of attributed scattering center models for SAR ATR whose
model primitives that balance between modeling fidelity and estimation accu-
racy. Our work has been aimed at developing attributed scattering center models for radar
scattering. These models are founded on electromagnetic scattering theory (uniform theory
of diffraction and physical optics). We based our models on scattering theory to ensure that
the derived models are physically meaningful.

Electromagnetic scattering models, however, can be too detailed to be of practical use
for ATR; we developed models that contain a small number of parameters which can be
accurately estimated, and which at the same time describe scattering behavior in sufficient
detail to effectively discriminate between targets. We developed physics-based scattering
center feature models that characterize RF backscatter responses using multiple attributes
for each scattering center; this gives an increased level of target discriminability, which
improves ATR performance. Richer features are especially important in extended operating
conditions, when fewer target scattering centers are observable.
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Developed computationally-efficient algorithms automatic feature extraction of
attributed scattering center features from complex SAR image-domain data.
The aim has been to derive estimation algorithms that can be implemented in SAR ATR
systems. Such algorithms should be computationally practical, should determine model
order autonomously, and should be “hands off” algorithms, requiring little or no hand-
tuning by the user.

Our effort has focused on developing algorithms that estimate model parameters from
complex-valued SAR imagery in the image domain. This is in contrast to many exist-
ing parameter estimation methods that operate on SAR phase history data. Image domain
processing is more practical, because existing ATR systems operate on SAR image “chips”
that have been prescreened by front-end processing. In addition, we developed model or-
der detection and image segmentation algorithms needed for feature extraction. Finally,
computational speed of the algorithms is of importance; we have developed algorithms with
good statistical properties while minimizing computation.

Analyzed feature uncertainty and derived analytical uncertainty bounds. The
goal has been to quantify the ATR performance improvement afforded by our new models
and estimation algorithms. We quantifed improvement first by determining the uncertainty
of the estimated features. Feature uncertainty is needed in Bayesean evidence accrual used
for scoring of candidate target hypotheses to the measured target data. We developed
feature extraction algorithms based on maximum likelihood statistical estimation theory,
and we derived corresponding Cramér-Rao lower bounds on feature uncertainty. The smaller
the feature uncertainty, the more discriminable are targets, and ATR performance improves.
Because our models are physically based, we were able to exploit prior information in
the feature extraction stage to improve resolution. We achieve sub-pixel accuracy and
superresolution of target scattering phenomena.

We characterized achievable estimation accuracy as a function of system parameters, such
as bandwidth, center frequency, and signal-to-clutter ratio.

Implemented stand-alone match scoring to evaluate target discriminability and
feature estimation tradeoffs. We developed a geometric hashing-based algorithm for
match scoring. The purpose was twofold: (i) to consider feature extraction and feature
match scoring in a tight loop to exploit synergy for improved ATR, and (ii) to quantitatively
evaluate feature extraction performance at the system level as target detection probabilities.
We developed match scoring rules that are tailored to the features and extraction algorithms
we developed. By characterizing feature uncertainty and coding this uncertainty in a match
score, we further increased target discriminability.

Increased the US technology base by training of graduate students and by dis-
seminating research through technical publications and presentations. Thirteen
graduate students, nine of which are US citizens, have been supported under this contract
to pursue graduate research degrees. Five of these students have taken up jobs with US
government or defense related industry after completing their Masters degree. Six of the
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students have completed or are pursuing their Ph.D. degree (five at OSU); one is currently
in the second year of the Masters degree program. Two former graduate students have
taken faculty or postdoctoral research positions at universities, and continue to conduct
research and publish on topics related to this program. Some of the research topics used to
train these students are outlined below:

3-Dimensional Target Reconstruction: Three-dimensional reconstruction
of targets from radar measurements provides for increased discriminability and
improved ATR performance. We investigated the use of interferometric syn-
thetic aperture radar (IFSAR) processing for the 3D reconstruction of radar
targets. A major source of reconstruction error is induced by multiple scatter-
ing responses in a resolution cell, giving rise to height errors. We developed a
model for multiple scattering centers within a resolution cell, and analyzed the
errors that result using traditional IFSAR height estimation. We developed a
simple geometric model that characterizes the height error and suggests tests
for detecting or reducing this error. We investigated the use of image mag-
nitude difference as a test statistic to detect multiple scattering responses in a
resolution cell, and we analyzed the resulting height error reduction and hypoth-
esis test performance using this statistic. Finally, we considered phase linearity
test statistics when three or more IFSAR images are available. Examples using
synthetic Xpatch backhoe imagery were generated.

STAP/SFAP-Based Adaptive Antennas: For airborne ATR systems, one
needs to update the platform information continuously. Current and future
airborne platforms are relying more and more on Global Positioning System
(GPS) for navigation and geolocation. GPS, though very accurate and reli-
able, is vulnerable to radio frequency interference and jamming. The reason
for vulnerability is that the GPS signals are very weak (approximately 30 dB
below the receiver noise). Adaptive antenna arrays are being used with GPS
receivers to suppress interfering signals. The current adaptive antenna based
GPS AJ systems (GAS-1 AE) use space-only processing; whereas, the next
generation AJ systems will use space-time adaptive processing (STAP) and/or
space-frequency adaptive processing (SFAP). STAP/SFAP improves adaptive
antenna performance for CW as well as wideband interfering signals and can
better handle mismatches between various channels as well as platform gener-
ated multipaths. Under this research program, we developed analytical models
to predict the performance of STAP/SFAP based antenna electronics [74],[75].
These models were used to study various implementations of STAP/SFAP. It was
shown [76] that in the presence of strong wide band interfering signals, STAP,
like space-only processing, has to use extra degrees of freedom to suppress in-
terfering signals. Analytical models were also used to compare the performance
of space-only, STAP and SFAP based AE under many interference scenarios.
It was demonstrated that SFAP performs as well as STAP and for interference
scenarios containing wideband as well as narrow band signals, SFAP performs
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better than STAP [77]. The performance of space-only processing, STAP and
SFAP in the presence of interference multipath was also studied [78]. Simulated
as well as real world interference multipath (antenna near a structure and on a
platform) were considered. It was shown interference multipath affect the per-
formance of all three systems. As expected, space-only processing suffers the
most degradation and in real world scenarios 128-bin SFAP outperforms 5-tap
STAP.

Rough Surface Scattering: The performance of radar systems utilized for
ATR is typically limited by the signal-to-clutter, rather than signal-to-noise
ratio. Signal-to-clutter ratio problems can be improved only by developing ef-
fective means for removing clutter from the received signal. While large targets
or targets moving at appreciable velocities can often be easily separated from
clutter returns, slow moving targets of more moderate cross sections can be very
difficult to detect in the presence of clutter. One source of clutter involves mi-
crowave backscattering from natural rough surfaces such as terrain or the sea.
Understanding physical properties of this rough surface clutter is critical for
designing sensors that can separate clutter and target scattering. Accordingly,
a study of the properties of rough surface clutter was performed as part of the
project. Results of the study show that surface clutter can vary strongly with
the physical properties of the observed medium, and that it can be a significant
source of errors for ATR systems. As part of the study, the performance of
a recent model for computing scattering from rough surfaces (the “small slope
approximation”) was explored and quantified.

Ultrawide Bandwidth Antennas: Many target recognition applications re-
quire ultrawide bandwidth signals for extracting target signatures associated
with different geometry and material features of the target. As a part of this
effort, a small low profile and UWB antennas that operates from 50 MHz to
2000 MHz was investigated. Antenna miniaturization techniques such as dielec-
tric or reactive loading are commonly used to increase the antenna’s electrical
size without increasing its physical size. However, each of these miniaturization
techniques by itself faces important performance trade-offs for large miniatur-
ization factors. A hybrid approach that involves both dielectric and reactive
loading was used to maximize the miniaturization factor while minimizing any
adverse effects. Our approach to miniaturizing an UWB antenna involved the
use dielectric material on both sides of the antenna (substrate and superstrate)
to maximize the miniaturization factor for a given dielectric. In addition, the
thickness of the dielectric material was tapered to suppress dielectric resonance
oscillation (DRO) modes and surface waves as well as to maintain high-frequency
performance. To maximize the miniaturization factor while minimizing the neg-
ative effects of dielectric loading, reactive loading or the artificial transmission
line was also used. This allowed us to minimize the dielectric constant which
results in less impedance reduction, a minimal antenna weight and reduces pos-
sible surface wave effects.
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Slot Array Antennas with Wide Scan Angle: The uses of Unmanned Air
Vehicles (UAV) are likely to increase in the future. These vehicles will be used
for reconnaissance, surveillance as well as for mapping small areas. Because
the platform size is relatively small and useable space for large antennas is
at a premium, it is important to understand the relationship between viable
antenna performance and radar system requirements. For these applications,
a broad band wide scan angle Synthetic Aperture Radar (SAR) antenna array
is of interest. The challenge is to design the array so that it can be placed
on a relatively flat surface underneath the belly of the vehicle. Because of the
directions that the SAR needs to operate relative to the array surface, wide
scan angle ability is desirable. In addition, since future SAR systems’ would
benefit from the highest resolution possible, as large a bandwidth as possible
is desired. All of these requirements present a difficult challenge for present
day antenna manufacturing. Under this research effort, an antenna array design
was determined that can provide the needed requirements for the desired radar
system performance on such a UAV location. It can provide a thin conformal
shape for the antenna elements and feed structure. Based on possible “behind
the ground plane” components available in the next few years a one band design
is achievable. It also easily provides for extension into a two band design when
small enough components can be manufactured in the future.

An outline of the report is as follows. Chapter 2 introduces attributed scattering mod-
els for SAR, and presents feature extraction algorithms, feature uncertainty, and results
on synthetic and measured SAR data. Chapter 3 presents an algorithm for model-based
classification of radar images, using the attributed scattering center features of Chapter 2.
Chapters 4–8 present research results from several graduate students who were funded as
AFRL fellowship students during the latter part of the program. Chapter 4 presents re-
search on interferometric SAR for 3D target reconstruction; Christian Austin conducted
this research and was advised by Prof. Randolph Moses. Mr. Austin will complete his M.S.
degree in December 2005 and continue for a Ph.D. degree at Ohio State. Chapter 5 presents
research on a large bandwidth slot array with wide scan angle; John McCann conducted
research on, and was advised by Dr. Ronald J. Marhefka and Prof. Benedikt A. Munk.
Chapter 6 presents research on rough surface clutter; Michael S. Gilbert conducted this
research and was advised by Prof. Joel T. Johnson. Chapter 7 presents research conducted
by Thomas D. Moore and Matthew L. Rankin on STAP/SFAP based adaptive antennas,
advised by Dr. Inder J. Gupta. Dr. Moore received his Ph.D. from the Ohio State Uni-
versity in December 2002, and Mr. Rankin received his M.Sc. in Electrical and Computer
Engineering from the Ohio State university in June 2004. Finally, Chapter 8 presents re-
search conducted by Brad Kramer on miniature UWB antenna designs; he was advised by
Dr. Chi-Chih Chen, and Prof. John L. Volakis.
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2. ATTRIBUTED SCATTERING MODELS FOR

SYNTHETIC APERTURE RADAR

2.1 Introduction

The electromagnetic reflectivity of an object is closely related to its geometry and orienta-
tion. Reflectivity data of an object can be obtained by a synthetic aperture radar (SAR)
by illuminating a region with electromagnetic radiation and measuring the energy scattered
back. The data obtained as a result of this process is a finite-extent, noisy set of informa-
tion about the scattering structures of the object. We wish to process this data and extract
information regarding the object’s features, which may then be used to identify the object.

When SAR data is gathered at high frequencies, the geometric theory of diffraction [8] allows
us to view a target as a collection of simple, isolated scattering structures referred to as
scattering centers. Hence, the total response from the complex target can be approximated
as the sum of responses of these individual scattering centers. We employ this assumption
throughout our study and approach the feature extraction problem at a scattering center
level.

We assume that the backscatter from a scattering structure complies with a parametric
model. This model is developed by Gerry [6] and it contains parameters that are related to
the location, orientation and geometry of the scatterer. Using this model, the noisy SAR
measurements from a complex target are approximated as the sum of the models of the
individual scattering centers and a Gaussian noise term. Feature vectors for the scattering
geometries are then obtained by estimating the parameters in their corresponding model.
Furthermore, these estimated features can be matched to the features of known targets for
target recognition applications.

With the adoption of the parametric model, we have expressed the feature extraction prob-
lem as a parameter estimation problem. Given the SAR data of a target, we wish to obtain
the estimates of the parameters of its scattering centers.

There are two possible domains in which we can perform the estimation process. The first
is the frequency domain. The measurements made at various frequencies and aspect angles
constitute the frequency domain data. In this domain, the response from a scattering center
is observed throughout the entire frequency grid, and the total response is the sum of several
of these individual scattering center responses. Determining the number of scatterers that
form the total response is a difficult model order selection problem. In addition, all of
the scatterers have to be processed simultaneously since their responses cannot be isolated
from one another; this results in a high dimensional estimation problem with no practical
solution.

The second possible domain is the image domain. The frequency domain measured data is
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pre-processed and transformed to form the corresponding SAR image. In the image domain,
most of the energy from scattering centers is isolated in small regions. This property allows
sequential processing of scatterers, so that practical estimation algorithms can be developed.

In [6], Gerry describes some algorithms to obtain the parameter estimates. These algo-
rithms require a lot of human interface at the stages of order selection, scattering center
region extraction and parameter initialization, which is not desirable in automatic target
recognition applications. Koets developed an estimation algorithm in [10] that eliminated
the user interface. However, this automated algorithm is slow and has convergence problems
in most cases. Also, some ad-hoc techniques have been implemented that have questionable
applicability to general targets.

In this report, we have developed a fast algorithm that is shown to give very satisfactory
results. As a first step, a user-friendly program asks the data collection and image formation
parameters to be input. This is the only human interface required in the algorithm. Fol-
lowing this, a region is extracted that contains most of the energy from a single scattering
center. The extracted scatterer is classified as a localized or a distributed scattering center.
Since the parametric models for the two scattering structures differ, localized/distributed
classification allows us to choose the appropriate model for the response of interest. We then
assign initial values to the parameters in the corresponding model. Effective initialization is
crucial for the algorithm to converge to the correct solution. A numerical optimization rou-
tine follows the initialization and obtains the final estimates by minimizing a cost function
according to a maximum likelihood criterion. Several algorithm modifications have been
developed to decrease the computational cost and improve the overall performance.

We have performed an extensive study on the problem of classifying scattering centers as
localized or distributed structures. We propose a generalized likelihood ratio test (GLRT)
and two computationally more efficient heuristic tests. We present performance evaluation
of these proposed tests through simulations.

We have first applied our parameter estimation algorithm to noisy SAR images that we
generate using the parametric model. By generating the data ourselves, we know the actual
values of the parameters and can therefore derive theoretical bounds on the minimum
achievable estimate variances. We compare the obtained parameter estimate variances to
the theoretical bounds (Cramér-Rao Bound) in order to assess the statistical performance
of the algorithm; we find the algorithm is performing successfully. We have also performed
experiments on Xpatch simulated data and measured data of a test target (SLICY) [12].
We present the parameter estimates obtained and discussed the results.

Finally, we have performed a side study on establishing a correspondence between the phys-
ical scattering structures being imaged and the SNR value observed in their corresponding
SAR image. We make use of a concept called the radar cross section (RCS), which is a
measure of a target’s reflectivity. Assuming a specific imaging scene, we predict the SNR
through the RCS of the object and the background in the scene. We also obtain estimates
of SNR from available measured data. We present the results of both the prediction and
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the estimation approaches.

An outline of this chapter is as follows.

In Section 2.2 we provide a brief background on synthetic aperture radars. We explain the
data collection and image formation scenarios. We then introduce the scattering center
approach and present the assumed parametric model for radar backscatter. Section 2.3
discusses the parameter estimation approaches we have developed. We also provide a sta-
tistical performance evaluation. In Section 2.10 we discuss the structure selection problem.
Section 2.11 demonstrates the algorithm’s performance on synthetic and measured SAR
data of the SLICY test target. Section 2.12 includes some concluding remarks.

2.2 Attributed Scattering Center Model

2.2.1 Introduction

In this section, we first provide a brief background on synthetic aperture radar (SAR),
focusing on the spotlight mode of operation. We describe the data collection process for
this specific operating mode. We then explain the image formation process that transforms
the measured frequency domain data into a SAR image. Finally, we introduce an attributed
scattering center model that represents the electromagnetic backscatter from an object.

2.2.2 Background on Synthetic Aperture Radar (SAR)

In synthetic aperture radar, a region in space is illuminated with electromagnetic radiation,
and the backscatter from that region is measured. This illumination-measurement process
is repeated at several locations, hence forming the aperture of the radar. There are three
main modes of operation for SAR, corresponding to different ways in which the aperture is
created [11]. In strip-mapping SAR mode, the aperture is formed by flying the radar in a
straight trajectory along the scene. The radar always points to the side at a right angle to
the flight path, so the imaging scene changes as the radar moves. As a result, the whole
area that the radar beam sweeps is mapped with this mode of operation. In the inverse
SAR (ISAR) mode, the radar is fixed while the target rotates, and measurements are taken
at various angles of rotation. The ISAR mode is mathematically equivalent to the spotlight
SAR mode, in which the object is fixed and the measurements are obtained along a path,
as seen in Figure 2.1. We are primarily interested in the spotlight mode of operation.

2.2.3 Data Collection

In spotlight mode SAR, data are collected at several aperture points along the path. At each
aperture point, the object of interest is illuminated with electromagnetic radiation, and the
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Figure 2.1: SAR Spotlight Mode of Operation

backscattered energy is measured as a complex-valued quantity. The radar is assumed to be
fixed in its position from the time it sends the signal to the time it receives the backscatter.
Then, the radar moves to the next aperture point to repeat the process.

The angle that the direction of radiation makes with the normal to the broadside of the
object is called the aspect angle and is represented by φ. Each aperture point corresponds
to a different aspect angle, and φ forms the first dimension of our measurements. The
second dimension is the frequency, f . The electromagnetic signal that is sent has nonzero
components in a band of frequencies. Therefore, the response obtained contains information
at frequencies within the band. The larger the width of the band, the better the resolution
will be in the downrange direction. The cross-range resolution improves as the angular data
collection region becomes wider.

As a result of this process, complex-valued backscatter measurement data is collected over a
range of aspect angles and frequencies. This data collection range corresponds to a segment
of an annular region in the polar plane [11, 2], as seen in solid lines in Figure 2.2. The
aspect angle φ takes values between −φm/2 and φm/2, and is expressed in units of degrees.

The frequency f ranges from
(

1 − β
2

)

· fc to
(

1 + β
2

)

· fc and it is in units of GHz, where

fc correspond to the center frequency of the band. The relative bandwidth β is defined as
the ratio of the total bandwidth to the center frequency.

2.2.4 Image Formation

At the end of the data collection process, we have the complex-valued measurements D̃(f, φ)
in polar coordinates (f, φ). For imaging purposes, this polar domain data is first resampled
to a uniform grid on Cartesian coordinates (fx, fy) where

fx = f cos(φ) fy = f sin(φ) (2.1)
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Figure 2.2: SAR Data Collection Range

The resampled data D̃(fx, fy) consists of uniformly spaced data points within the region
enclosed by the dotted rectangle in Figure 2.2 [11]. In this new Cartesian grid, fx ranges

from fc ·
(

1 − β
2

)

to fc ·
(

1 + β
2

)

, whereas fy ∈
[

−fc · sin
(

φm

2

)

, fc · sin
(

φm

2

)]
1. We assume

M data points in the fx range and N data points in the fy range.

As a result of resampling, we have an M×N array of data D̃(fx, fy) which is in the frequency
domain. We need to transform this data into the image domain to obtain the SAR image.
This task can be achieved by two-dimensional inverse Fourier transforming the frequency
domain data. However, some pre-processing of the data is required before performing the
2D-IFFT in order to improve the quality of the resulting image.

The data collected has finite extent. This finite extent data can be thought of as having
data over the entire (fx, fy) space and multiplying it with a rectangular window which
leaves us with our current data set. If a 2D-IFFT is performed on this data, the image
obtained would be the convolution of the actual image with the 2D-IFFT of the rectangular
window. This would result in large sidelobes that degrade the image quality. In order
to reduce the effects of large sidelobes, the data at hand is first multiplied by a window.
This windowing process reduces the sidelobes by smoothing the transition from the no-data
region to the rectangular data grid. One drawback of this windowing is a reduction in
resolution due to the reduced effective width of the window [13]; however, this drawback is
tolerable. A common window used for this purpose is the Taylor window. In our studies
we have employed a Taylor window with a -35 dB sidelobe level.

Another pre-processing step is to zero-pad the windowed data before transforming it to
the image domain. Although this process does not improve the resolution property of the
image, it helps us obtain a smoother image by reducing the actual size of the image pixel.

1Sometimes the rectangular region is decreased so that it lies entirely within the annular region.
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Figure 2.3: SAR Image Formation Block Diagram

Therefore we zero-pad the M × N sized windowed data to a new size of Mz × Nz. We
typically use 50% zero padding; that is Mz = 1.5M and Nz = 1.5N .

The overall imaging process can be seen as a block diagram in Figure 2.3. At the end, the
SAR image D(x, y) is obtained.

2.2.5 Parametric Model

In this section, we present a parametric model for the backscattered field of an individual
scattering mechanism. This model is developed by Gerry [6, 31] and is based on a high-
frequency approximation of electromagnetic scattering. According to the geometric theory
of diffraction, if the wavelength of the incident radiation is small compared to the size of an
object, then the object is assumed to consist of electrically isolated scattering centers [8].
Therefore, the total response Ẽ(f, φ; θ) of the object can be modeled as the sum of its
individual scattering center models

Ẽ(f, φ; θ) =

n∑

i=1

Ẽi(f, φ; θi) (2.2)

where θT = [θT
1 , . . . , θT

n ] and

Ẽi(f, φ; θi) = Ai ·
(

j
f

fc

)αi

· exp

(−j4πf

c
(xi cos φ + yi sin φ)

)

·sinc

(
2πf

c
Li sin(φ − φ̄i)

)

· exp(−2πfγi sin φ) (2.3)

Each term Ẽi(f, φ; θi) represents the backscatter from a single scattering mechanism as a
function of frequency f , aspect angle φ and parameter set θi = [xi, yi, αi, γi,
φ̄i, Li, Ai]. The propagation velocity of the electromagnetic signal is denoted by c, where
c = 0.3 × 109 m/sec.

The set of parameters {xi, yi, αi, γi, φ̄i, Li, Ai} used in the model have physical interpreta-
tions related to the location and the geometry of the scatterer. The parameters xi and yi
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Figure 2.4: Scattering Primitives

correspond to the downrange and crossrange location of the scattering center, in meters.
The relative amplitude of the measured field is represented by Ai ∈ C

2. In the case of
multiple polarization data, Ai is a vector. The parameter αi characterizes the frequency de-
pendence of the response and is discrete-valued taking half integer values less than or equal
to one. Values of αi less than zero correspond to diffractive scattering and such responses
are very weak at high frequencies. The length of the scattering center is denoted by Li, and
φ̄i is its orientation angle with respect to the broadside. The parameter γi models the mild
aspect dependence of localized scattering center cross section.

There are two types of scattering centers: localized and distributed. As the name suggests,
localized scattering centers have responses that are localized in the image domain. For
these scatterers, the length parameter L is equal to zero and the orientation angle φ̄ is
undefined. Distributed scattering responses usually span several image pixels along the
crossrange direction. The parameter γ equals zero for distributed scattering mechanisms.

The parameters α and L contain information about the geometry of the scatterers. A
zero-valued length parameter corresponds to a localized scattering center whereas L > 0
means that the scatterer is distributed. The frequency dependence parameter α is related
to the curvature information. It takes the value 1 for flat surfaces, 1/2 for singly-curved
surfaces and 0 for doubly-curved surfaces. Negative values of α correspond to diffraction
scattering terms; at high frequencies, these terms typically have very low amplitude. The
two parameters (α,L) can be used to distinguish among several scattering primitives. In
Figure 2.4, some examples of these scattering primitives are displayed along with their
corresponding α and L values.

2For perfectly electric conductors measured in the far-zone, it has been hypothesized that Ai ∈ R [6];
however, we assume Ai ∈ C in this work.
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2.2.6 Parameter Normalization

In order to provide a resolution-independent description of the model, we normalize the
model parameters. The normalization process also provides a scaling among the parameters
that results in improved numerical properties of parameter estimation algorithms.

The downrange and crossrange dimensions of an image pixel, in meters are given by

px =
1

fc
· c

2β
· ηx, py =

1

fc
· c

4 sin(φm/2)
· ηy (2.4)

The factors ηx and ηy correspond to the effect of zero-padding during image formation.
They are given by:

ηx =
M − 1

Mz − 1
, ηy =

N − 1

Nz − 1
(2.5)

We then define the normalized parameters as follows:

xp =
x

px
yp =

y

py
Lp =

L

py
(2.6)

γp = γ · 4πfc sin(φm/2) (2.7)

φ̄p =
φ̄

φm/2
(2.8)

The parameters x, y and L are normalized by the downrange and crossrange pixel dimen-
sions, so that the new parameters xp, yp and Lp are in units of pixels instead of units of
meters. The normalized parameter φ̄p ranges from −1 to 1, representing the orientation
angle as a percentage of the maximum aperture. The parameter γp corresponds to the
dispersion as a function of aspect angle. For example, γp = 1 means that as we go from
the left extreme of the aperture to the right extreme, the amplitude changes by a factor
of e1. We further define a new length parameter Lc which is normalized to the crossrange
resolution of the system. It is independent of the amount of zero-padding used.

Lc = L · 4fc sin(φm/2)

c
= Lp · ηy (2.9)

The Cartesian frequency coordinates are also scaled as

fxn =
fx

fc
fyn =

fy

fc
f2 =

fyn

2 sin(φm/2)
(2.10)

As a result of the scaling, fxn ∈ [1 − β/2, 1 + β/2], fyn ∈ [− sin(φm/2), sin(φm/2)], and
f2 ∈ [−1/2, 1/2].
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With the use of these normalized parameters, the scattering center model becomes

E(fxn, fyn) = A ·
(

j
√
(
fxn

2 + fyn
2
)
)α

· exp

(

−j2π

(
fxn

β
xpηx + f2ypηy

))

·sinc




π
√
(
fxn

2 + fyn
2
)
Lpηy

2 sin(φm/2)
sin
(
tan−1(fyn/fxn) − φ̄pφm/2

)





· exp(−f2γp) (2.11)

We assume that scattering responses comply with the model in Equation 2.11. Our main
goal in this study is to obtain the estimates of the model parameters that best fit a given
response. Parameter estimation is performed through the minimization of a cost function
that represents the difference between the model and the actual response. By normalizing
the model parameters, we scale their effect on the cost function, hence improve the numerical
stability of the estimation problem.

2.3 Parameter Estimation

2.4 Introduction

In this section we explain the estimation of the parameters in the model introduced in
Section 2.2.5. We first discuss several parameter estimation approaches implemented by
Gerry [6] and Koets [10], and introduce our approach. Then, we explain each stage of
this approximate maximum likelihood (AML) parameter estimation technique. We provide
details of the image segmentation process where regions of interest are extracted from
a given SAR image. It is followed by a structure selection stage where the scatterer of
interest is classified as either a localized or a distributed scattering center. This procedure
is discussed in more detail in Section 2.10. Then, we describe the steps of the numerical
optimization process which are parameter initialization and nonlinear minimization. In
order to evaluate the performance achieved, the Cramér-Rao Bound is derived for the
parameters in the model. Some performance results are presented, comparing the estimated
parameter variances with the calculated Cramér-Rao bounds. Finally, we discuss variations
of this algorithm that compromise accuracy for increased computational speed.

2.5 Parameter Estimation Approaches

The parameter estimation problem can be stated as follows: Given a SAR image D(x, y),
find the set of parameters θT = [θT

1 , . . . , θT
n ] that best fit the n scattering mechanisms

present in the object that is imaged.
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Let D̃(fx, fy) be the resampled frequency domain measurements used to obtain the SAR
image D(x, y). (The tilde sign is used to refer to the frequency domain variables). It is
assumed that these measurements consist of a model term Ẽ(fx, fy; θ) that exactly fits the
parametric model and a noise term Ñ(fx, fy) that is complex white Gaussian.

D̃(fx, fy)
︸ ︷︷ ︸

measurements

= Ẽ(fx, fy; θ)
︸ ︷︷ ︸

model term

+ Ñ(fx, fy)
︸ ︷︷ ︸

noise term

(2.12)

For the sake of simplicity, we will stack these two dimensional (M ×N) terms into a vector
of size MN × 1 and refer them with lowercase letters.

d̃(fx, fy) = ẽ(fx, fy; θ) + ñ(fx, fy) (2.13)

The noise ñ is a normally distributed random vector, ñ ∼ N (0, Σ̃ = σ2I). Since ẽ is
deterministic, we can conclude that the measurement vector d̃ ∼ N (ẽ(θ), Σ̃ = σ2I) and has
the following probability distribution function (pdf).

f(d) =
1

πMN · σ2
· exp

(

−‖d̃ − ẽ(θ)‖2

σ2

)

(2.14)

The maximum likelihood parameter estimates are then given by:

θ̂ML = arg min
θ

‖d̃ − ẽ(θ)‖2 (2.15)

However, this parameter estimation problem is very difficult to solve as it is stated in
Equation 2.15. Since the whole image is treated at the same time, the dimension of the
problem is very high. For example, assume that there are 10 scattering centers in the
image. Each scattering center has 7 parameters, θi = {xi, yi, αi, γi, φ̄i, Li, Ai}, resulting
in a total of 70 parameters to estimate. This is a very high-dimensional problem, with a
highly nonlinear cost function. The minimization task is computationally very expensive to
implement. Therefore we wish to simplify this problem by reducing its dimension.

Previous Work

Simplification can be achieved by exploiting the fact that scattering center responses are
isolated in the image domain when data is gathered at high frequencies. Let us first intro-
duce the image domain representation of the data. The image formation process described
in Section 2.2.4 is a linear operator, denoted by B. The SAR image vector d is therefore
given by

d = B · d̃ = B · [ẽ(θ) + ñ] (2.16)

The model term ẽ(θ) can be written as the sum of individual scattering center models.

d = B ·
[

n∑

i=1

ẽ(θi)

]

+ n (2.17)
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where n = B · ñ and n ∼ N (0,Σ = BΣ̃BH). We further define the image formed from a
single scattering center model ẽ(θi) by e(θi) = B · ẽ(θi), so

d =

n∑

i=1

e(θi) + n = e(θ) + n (2.18)

The noise term n is a colored Gaussian noise vector and e(θ) is deterministic. Therefore
the MzNz × 1 image vector d has the following Gaussian pdf.

f(d) =
1

πMzNz · |Σ| · exp
[

−(d − e(θ))HΣ†(d − e(θ))
]

(2.19)

where † denotes the Moore-Penrose pseudo-inverse. The parameter estimates that maximize
the likelihood are given by:

θ̂ML = arg min
θ

[d − e(θ)]HΣ†[d − e(θ)] (2.20)

At this point, we can make use of the fact that scattering center responses are isolated in
the image domain. This way, we can decouple the minimization problem and treat each
scattering center separately.

First step is to isolate a region of high energy R in the image which consists of the response
from the kth scattering center. We denote the image pixels within that region by dR, and
θk corresponds to the parameters of that scattering center. We employ the ML criterion
presented in Equation 2.20 for this region of interest, obtaining an approximate maximum
likelihood (AML) estimation criterion.

θ̂k,AML = arg min
θk

[dR − eR(θk)]
HΣ†

R[dR − eR(θk)] (2.21)

This estimation method is implemented by Koets [10]. Although the complexity of the
problem is significantly reduced compared to Equation 2.20, it is still computationally ex-
pensive. The cost function minimization is achieved by an iterative numerical optimization
algorithm, starting at a set of initial parameter estimates θ̂0

k. At each iteration t, the whole

frequency domain model data ẽk(θ̂
t
k) has to be calculated and transformed into the image

domain, e(θ̂t
k) = B · ẽ(θ̂t

k). As the size of the data increases (as it does for the case of high
resolution data), this process becomes more and more expensive.

In [6], Gerry developed an image domain model, so that given a set of parameters θk, the
image data can be directly calculated (instead of calculating the frequency domain data
and transforming it). However, this new image domain model has approximations that
introduce inaccuracies. Also, the model includes terms that are difficult to compute, so
direct image data calculation is not computationally favorable either.
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Our Approach

For further simplification of the problem, we again exploit the fact that the response of
a scattering center e(θk) is isolated in a region R and is very small outside that region.
Therefore we can tolerate aliasing due to a possible decimation in the frequency domain.
Let us denote the windowed and zero-padded Mz ×Nz frequency domain data by S̃(fx, fy).
The corresponding image E(x, y) is obtained by performing a 2D-IFFT on S̃(fx, fy).

S̃(fx, fy)@ > 2D − IFFT >> E(x, y) (2.22)

If we decimate S̃(fx, fy) by a factor of m in the downrange direction and a factor of n in
the crossrange direction, we obtain S̃(m · fx, n · fy) of size Mz/m × Nz/n. Performing the
2D-IFFT on this decimated data, we obtain an image E′(x, y).

S̃(m · fx, n · fy)@ > 2D − IFFT >> E′(x, y) (2.23)

Let us now derive the relationship between the actual image E(x, y) and the aliased image
E′(x, y) for the case where the decimation factor is 2 for both directions. We assume that
Mz and Nz are even integers.

S̃(fx, fy) =

Mz−1∑

x=0

Nz−1∑

y=0

E(x, y) · exp

(−j2πfxx

Mz

)

· exp

(−j2πfyy

Nz

)

(2.24)

S̃(2fx, 2fy) =
Mz−1∑

x=0

Nz−1∑

y=0

E(x, y) · exp

(−j2π2fxx

Mz

)

· exp

(−j2π2fyy

Nz

)

(2.25)

S̃(2fx, 2fy) =

Mz
2

−1
∑

x=0

Nz
2

−1
∑

y=0

E(x, y) · exp

(−j2πfxx

Mz/2

)

· exp

(−j2πfyy

Nz/2

)

+

Mz
2

−1
∑

x=0

Nz−1∑

y= Nz
2

E(x, y) · exp

(−j2πfxx

Mz/2

)

· exp

(−j2πfyy

Nz/2

)

+

Mz−1∑

x= Mz
2

Nz
2

−1
∑

y=0

E(x, y) · exp

(−j2πfxx

Mz/2

)

· exp

(−j2πfyy

Nz/2

)

+

Mz−1∑

x= Mz
2

Nz−1∑

y= Nz
2

E(x, y) · exp

(−j2πfxx

Mz/2

)

· exp

(−j2πfyy

Nz/2

)

(2.26)
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Figure 2.5: The relation between an original SAR image and the image formed by decimating
the frequency domain data.

S̃(2fx, 2fy) =

Mz
2

−1
∑

x=0

Nz
2

−1
∑

y=0

[

E (x, y) + E

(

x +
Mz

2
, y

)

+ E

(

x, y +
Nz

2

)

+ E

(

x +
Mz

2
, y +

Nz

2

)]

· exp

(
j2πfxx

Mz/2

)

· exp

(
j2πfyy

Nz/2

)

(2.27)

Thus,

E′(x, y) = E (x, y) + E

(

x +
Mz

2
, y

)

+ E

(

x, y +
Nz

2

)

+ E

(

x +
Mz

2
, y +

Nz

2

)

(2.28)

As seen in Equation 2.28, the aliased image E′(x, y) is a sum of subimages of E(x, y).
For arbitrary m and n values, the aliased image would correspond to the summation of
subimages formed by dividing E(x, y) into m segments in the downrange direction and n
segments in the crossrange direction. This relation is depicted in Figure 2.5.

If the isolated scattering response region R is concentrated in a subimage-sized area, the
summation in Equation 2.28 has at most one summand that is not close to zero. Since
sidelobe suppression is achieved by windowing prior to inverse Fourier transforming, the
pixels outside R have small amplitudes. Therefore the effect of adding several sidelobe
pixels to the response does not cause significant degradation.

We can determine the rules for choosing the decimation factors m and n. First, m and n
should properly divide Mz and Nz respectively. We also should be able to enclose region R

within at least an
(

Mz
m × Nz

n

)

rectangle. Finally, the summation of m×n sidelobes should
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not exceed a certain amplitude. As an example, let us pick this amplitude threshold to be
10 dB below the peak. When we use a Taylor window with a -35 dB sidelobe level (sℓ)
during the image formation, we guarantee that the resulting image will have sidelobes lower
than 35 dB below the peak. Assuming the worst case scenario of all the sidelobes adding
constructively, the summation will have an amplitude of m×n times a single sidelobe level.
The requirement can then be expressed as

20 log10(m · n · sℓ) < −10

20 log10(sℓ)
︸ ︷︷ ︸

−35

+20 log10(m · n) < −10

m · n < 17.78 (2.29)

Since the sidelobes are usually much lower than the -35 dB level and do not always add
constructively, the choice of -10 dB as a threshold is capable of preventing significant degra-
dation to the actual scattering response.

2.6 Estimation Algorithm Outline

In this section, we explain the steps of the parameter estimation algorithm in detail. The ap-
proximate maximum likelihood estimates of the parameters are obtained using the criterion
given in Equation 2.21. This criterion requires sequential processing of the scattering cen-
ters. Furthermore, frequency domain decimation is performed for cost function evaluations
during numerical minimization, as explained in Section 2.5.

Since we are implementing sequential processing, the first step is to extract a segment of
high energy within the image that includes the response of a single scattering center. Then,
we classify that scattering response as distributed or localized, so that we know which set
of parameters to estimate. This is followed by numerically obtaining the set of parameter
values that minimize the cost function. As with every numerical optimization process, an
initial set of values is required to start the iterations. After the parameter estimates are
obtained, the scattering response is simulated by evaluating the model with the estimated
values. Then, this simulated response is subtracted from the original image. The whole
process is repeated for the next scattering center3.

2.6.1 Image Segmentation

In the image segmentation stage, the aim is to extract a region within a given SAR image
that encloses most of the energy from a single scattering center. Once the pixel indices of

3Note that we could perform an iterative minimization not only on the parameters of the current scattering
center, but on all previous scattering center parameters as well. Doing so would be the realization of the
Expectation-Maximization (EM) algorithm.
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a segment are determined, all the following processing of the scattering center is confined
to those pixels.

We employ an algorithm known as the Watershed segmentation for this task [18]. The
Watershed segmentation algorithm is best understood by the help of a landscape analogy.
We can visualize the magnitude of the SAR image as a three-dimensional landscape where
the magnitude values of the pixels correspond to their heights. This landscape is first
submerged into water. Then, the water is slowly drained so that the landscape emerges at
the surface, starting with the highest points. Every time a new peak appears, it is assigned
a new segment number. These segments are grown as new pixels belonging to that peak
surface. After all the water is drained, we have segmented the image into regions of peaks.
The segment corresponding to the highest peak is the region we are interested in.

As a result of the Watershed segmentation, each peak is assigned to a new segment. There
are two cases in which this property would cause problems. The first one is the presence of
ripples due to noise in the scattering response and windowing in the image formation. In this
case, each small peak within the ripple would be assigned to a different segment, preventing
us from capturing the whole response in a single region. The second case is the responses of
long distributed scatterers with significant tilt angles. These responses have a two-humped
profile which would result in each bump to be assigned to a different segment. In order to
overcome these problems, we have modified the Watershed segmentation algorithm.

In the modified algorithm, we assume that the peaks that unite within the 3 dB region
below the largest peak are combined and treated as a single segment. This would prevent
small noise ripples to be assigned to different segments. It would also allow us to extract
tilted distributed responses as single segments, since the region between the two peaks of
such a response does not go below the -3 dB level for most tilt angles (|φ̄p| . 0.8) [10].
We also assume that the pixels below the -20 dB level (20 dB below the current peak)
correspond to noise and clutter, and we disregard them. Nearly all energy of the scattering
response is captured until the -20 dB level is reached, therefore this process does not cause
elimination of a significant amount of information. By keeping the extracted region small,
it also reduces the computational cost of the parameter optimization stage.

Let us now explain the steps of this segmentation algorithm. First, we compute the magni-
tude of the SAR image. We find the highest pixel value and determine the -3 dB and -20 dB
levels below the peak. We process the pixels one at a time and in a descending magnitude
order. Until we reach the -3 dB level, we process each pixel in the following way: We first
search the segment assignments of its 8 neighboring pixels. There are three cases possible.

1. no neighbors are assigned to a segment

2. one or more neighbors are assigned to a single segment

3. one or more neighbors are assigned to multiple segments

The first case corresponds to a new peak, so the pixel of interest is assigned a new segment
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number. In the second case, the pixel is assigned to the same segment as its neighbors. The
third case is where multiple segments unite. In this situation, the pixel is assigned to the
segment with the lowest index among the uniting segments. The segment assignments of
all the pixels within the uniting peaks are also modified, so that they all have that same
lowest index.

For the pixels between the -3 dB and -20 dB levels, a simpler processing scheme is used.
We confine our interest to segment number 1, which is the one containing the largest peak.
We similarly search the 8 neighbors of the processed pixel. This time, we distinguish among
two possible cases.

1. no neighbors are assigned to segment 1

2. one or more neighbors are assigned to segment 1

In the first case, we discard the pixel of interest. This way we save ourselves from growing
segments that we will not be needing. In the second case, we assign the pixel to segment 1.
When we reach the -20 dB level, we have obtained our region that consists of pixels which
were assigned to segment number 1.

In Figure 2.6, we can see a one-dimensional example. Since peaks 1 and 2 unite above the
-3 dB threshold, they are combined as segment 1. Segment number 3 is discarded after the
-3 dB level is passed.

2.6.2 Structure Selection

The parametric model we have introduced in Section 2.2.5 contains a total of seven para-
meters, {x, y, α, γ, φ̄, L,A}. However, not all of them are defined and have non-zero values
in all cases. Scattering centers can be classified as either localized or distributed. For local-
ized scatterers, the parameter L equals zero and φ̄ is undefined. As a result, there are five
remaining parameters to estimate, {x, y, α, γ,A}. In the case of distributed scatterers, the
parameter γ is zero, leaving us with six parameters to estimate, {x, y, α, φ̄, L,A}.

Consequently, before we proceed with parameter estimation, we first have to decide which
set of parameters we will estimate. In other words, we have to classify the scattering
response of interest as localized or distributed. Following this classification, we may attempt
to estimate the corresponding parameter set.

This structure selection problem is discussed in detail in Section 2.10. To summarize, we
propose three different hypothesis testing algorithms in Section 2.10, and compare these
algorithms in terms of performance and computational complexity. For the remainder of
this section, we assume the structure is known or an estimate has been provided.
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Figure 2.6: One-dimensional segmentation example
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2.6.3 Parameter Initialization

Numerical optimization techniques converge to a solution iteratively, and iterative proce-
dures require an initial point. Therefore, in order to obtain the parameter estimates by
numerically minimizing the cost function, we need to initialize our parameters.

The cost function that we will be minimizing (Equation 2.21) is high-dimensional and non-
convex. The cost surface contains several local minima along with the global minimum.
Therefore, the starting point of the algorithm is very crucial. If the starting point is poorly
chosen, the iterations might converge to a local minimum or not converge at all. In order
to assure convergence to the global minimum and to achieve this quickly, we need to start
as close to the actual solution as possible. In other words, our initial estimates of the
parameters should be as close to their actual values as possible. Therefore, we exploit the
parametric model and SAR image properties to obtain effective initialization.

For the sake of numerical stability of the optimization problem, we use the normalized
parametric model introduced in Section 2.2.6 from this point on. The normalized set of
parameters is {xp, yp, α, γp, φ̄p, Lp, A}.

We start the initialization process with the two location parameters xp and yp, which are
in units of pixels. We use the method suggested and implemented by Koets in [10]: we
compute the center of mass of the segmented region and assign them as our initial values
xinit

p and yinit
p . The parameter γp that appears in the localized model is initialized to zero.

For distributed model parameters φ̄p and Lp, we exploit the parametric model to obtain
good initial estimates. The normalized model for a distributed scatterer (with γp = 0) is as
follows:

Ẽ(fxn, fyn) = A ·
(

j
√

fxn
2 + fyn

2

)α

· exp

(

−j2π

(
fxn

β
xpηx + f2ypηy

))

· sinc




π
√

fxn
2 + fyn

2Lpηy

2 sin(φm/2)
sin
(
tan−1(fyn/fxn) − φ̄pφm/2

)



 (2.30)

When we take the magnitude of the model, the complex exponential term disappears.

|Ẽ(fxn, fyn)| = |A| ·
∣
∣
∣
∣

√

fxn
2 + fyn

2

∣
∣
∣
∣

α

·

∣
∣
∣
∣
∣
∣

sinc




π
√

fxn
2 + fyn

2Lpηy

2 sin(φm/2)
sin
(
tan−1(fyn/fxn) − φ̄pφm/2

)





∣
∣
∣
∣
∣
∣

(2.31)

For fixed a frequency fn =
√

fxn
2 + fyn

2, we can observe the |sinc(·)| term by itself. A sinc

term takes its maximum value when the argument is zero. In our case we have a sin(·) term
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in the argument, and it equals zero when

tan−1

(
fyn

fxn

)

︸ ︷︷ ︸

φ

= φ̄p ·
φm

2
(2.32)

=⇒ φ

φm/2
= φ̄p (2.33)

This means that the magnitude of the frequency data has its peak when the normalized

aspect angle

(

φ
φm/2

)

is equal to the parameter φ̄p.

The main lobe width of the sinc(·) term gives us information about the Lp parameter. If

we move our aspect angle origin from 0 to φ̄p
φm
2 by the transformation φ′ = φ− φ̄p

φm
2 , the

magnitude of the model becomes

|Ẽ(fn)| = |A| · |fn|α ·
∣
∣
∣
∣
sinc

(
πLpηy

2 sin(φm/2)
fn sin(φ′)

)∣
∣
∣
∣

(2.34)

Let fn sin(φ′) = f ′
y = ∆ · ν where ∆ is the interval between two consecutive points in the

normalized fyn grid and ν is an integer index that is zero at φ′ = 0. With the assumption
fn ≈ fxn, the frequency model magnitude along constant fxn becomes

|Ẽ(ν)| = K ·
∣
∣
∣
∣
sinc

(
πLpηy

2 sin(φm/2)
∆ν

)∣
∣
∣
∣

(2.35)

where K is a constant. If we restrict ourselves to the main lobe of the sinc(·), we can
eliminate the magnitude operation, so that

|Ẽ(ν)| = K · sinc

(
πLpηy

2 sin(φm/2)
∆ν

)

,

∣
∣
∣
∣

πLpηy

2 sin(φm/2)

∣
∣
∣
∣
≤ π (2.36)

We use a Taylor expansion around ν = 0 and approximate the main lobe of the sinc with
a quadratic function.

sinc

(
πLpηy

2 sin(φm/2)

)

≈ 1 − 1

6
·
(

πLpηy

2 sin(φm/2)
∆

)2

ν2 (2.37)

Therefore, if we fit a parabola of the form f(ν) = 1 + aν2 to the main lobe, we can solve
for L from the parameter a.

We implement the above algorithm as follows. We first convert the image segment back to
the frequency domain by performing a 2D-FFT, removing the zero padding and dividing by
the imaging window. We remark that the result of this process is not the exact frequency
domain data. In order to isolate a single scattering center, we have performed a windowing
through the segmentation process. Therefore the resulting data we obtain is the actual
frequency data convolved by a window. However, we ignore this convolution.
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The errors from interpolation from the polar coordinates to the Cartesian coordinates are
lowest around the center frequency. For this reason we prefer to use the data around fc. To
achieve more stable results, we also perform averaging of constant fx data vectors across
a 10% bandwidth around fc (see Figure 2.7). This magnitude data vector has a sinc-like
characteristic. Assuming the vector lies between -1 and 1, the relative location of the peak
gives us our φ̄init

p . We then fit a parabola to the main lobe of this sinc and solve for Lp.
The details of this parabola fitting procedure are discussed by Koets in [10].

The parameter α is discrete and can only take half integer values less than or equal to one.
At high frequencies, scattering responses with α < 0 are very weak and can be ignored in
practice unless the noise level is very small. In this study, we assume that α takes values
from the set {0, 1/2, 1}. Given the initial estimates of the other parameters, we calculate
the cost function for all the three possible α values. The value that results in the minimum
cost is chosen as αinit.

The amplitude parameter A ∈ C appears linearly in the model. Therefore, instead of im-
plementing a numerical optimization, we can directly obtain a least squares fit estimate
(Section 2.6.4). Hence, we do not require a parameter initialization for A. We will analyti-
cally solve for the A estimate at each iteration.

2.6.4 Parameter Optimization

We obtain approximate maximum likelihood estimates of the parameters by numerically
minimizing the following cost function over the extracted region R (Section 2.5)

J(θk) = [dR − eR(θk)]
HΣ†

R[dR − eR(θk)] (2.38)

where θk is the set of parameter estimates for the scattering center isolated in region R.
The image segment computed from the parametric model with parameters θk is denoted
by eR(θk). The SAR image data over the segment is represented by dR, and ΣR is the
correlation matrix of the colored Gaussian noise pixels in R.

As discussed in Section 2.5, instead of computing the whole frequency domain model and
forming the modeled image, we will be computing a decimated version of the frequency
domain data. Therefore, we need to determine the decimation factors m and n in downrange
and crossrange directions respectively. As previously discussed in Section 2.5, there are three
rules for choosing these factors.

• m should divide Mz and n should divide Nz properly

• We should be able to enclose region R within at least an
(

Mz

m × Nz

n

)
rectangle: Letting

sx and sy be the number of pixels the segmented region R spans in downrange and
crossrange directions, we require

Mz

m
≥ 2.5 · sx and

Nz

n
≥ 2.5 · sy (2.39)
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• The summation of mn sidelobes should not have an amplitude high enough to sig-
nificantly degrade the actual scattering response: We restrict mn to be less than or
equal to 16.

The next point to discuss is the estimation of the discrete-valued parameter α. Therefore,
instead of estimating α via numerical optimization (where it will be treated as a real-valued
parameter), we follow a different strategy. Once α is initialized, we keep its value fixed
throughout the optimization process while we iterate on the other parameters. Even in
the case where the initial estimate of α is wrong, it does not effect the solution of the
optimization significantly. After the estimates of the other parameters are obtained, we
calculate the cost function for all three possible values of α and pick the one with the
lowest cost as the final estimate. This is a computationally efficient way of estimating α,
since it results in a decrease in the dimension of the numerical minimization problem. The
computation we save by the reduction in dimension is more than the computation required
for the three cost function evaluations to estimate α at the end.

We achieve one more reduction in the dimension of our problem by excluding the complex-
valued amplitude parameter A4. Since A appears in the model linearly, an analytical
solution for its least squares estimate exists. Let us isolate the A factor from the model
term eR(θk) in Equation 2.38.

eR(θk) = Ak · sR(θk) (2.40)

Then,
A · sR(θk) + nR = dR (2.41)

and the least squares solution for A is given by [21]

Â =
sR(θk)

H · dR

sR(θk)
H · sR(θk)

(2.42)

We substitute this result into Equation 2.38 to obtain the modified cost function.

J(θk) = [dR − Â · sR(θk)]
H · Σ†

R · [dR − Â · sR(θk)] (2.43)

J(θk) =

[

dR − sR(θk)
H · dR

sR(θk)
H · sR(θk)

sR(θk)

]H

Σ†
R

[

dR − sR(θk)
H · dR

sR(θk)
H · sR(θk)

sR(θk)

]

(2.44)

As a result of these exclusions, the parameters to be iterated on during numerical minimiza-
tion are {xp, yp, γp} for localized scatterers and {xp, yp, φ̄p, Lp} for distributed scatterers.

We perform the numerical optimization in two stages. In the first stage, we assume that
the noise is white in the image domain. We take Σ in Equation 2.44 to be equal to σ2I.
Following this, we perform the colored noise optimization where we use the correct value of

4We have assumed A ∈ C in this work; however, if we restrict A ∈ R, a similar least squares solution for
Â can also be found.
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Σ = σ2BBH (Section 2.5). The two-stage optimization is found to converge to the global
minimum more often than a single colored noise optimization. We hypothesize the reason
to be a longer region of attraction of the cost function about the global minimum when σ2I.

The numerical minimization is implemented by Matlab. The fminu.m command within
Matlab’s Optimization Toolbox is used, as Koets did in [10]. This is a command that
finds the minimum of unconstrained multi-variable functions [7]. We do not provide an
analytical expression for gradient vector calculation, so it is obtained through numerical
differentiation. The fminu function implements the BFGS Quasi-Newton algorithm with
a mixed quadratic and cubic line search procedure. Newton methods in general iterate
by approximating the cost surface by a quadratic function around the iteration point and
trying to find the minimum. In Quasi-Newton methods, the second derivative information
(Hessian) used to obtain the quadratic approximation is not calculated directly. Instead,
some iterative formulas are used. These update methods give the name of the specific
Quasi-Newton method. BFGS corresponds to the formula developed by Broyden, Fletcher,
Goldfarb and Shanno. More detailed information about these optimization techniques can
be found in [1].

2.6.5 Summary

We have discussed the steps of the parameter estimation algorithm in detail. Let us sum-
marize the complete procedure starting with the input SAR image, until the algorithm
terminates.

The termination criteria are user specified. The user is asked for three stopping conditions:

1. The maximum number of scattering centers to be processed.

2. Maximum overall percentage fit: An error image is formed from the difference between
the actual SAR image and the image that we simulate from the model by using
estimated parameter values. The overall percentage fit is defined as one minus the
ratio of the total energy in the error image to the total energy in the actual image.

3. Minimum peak level required to process a peak: The peak level of a scatterer is defined
as the ratio of its peak amplitude to the amplitude of the highest peak in the image,
in the dB scale.

The algorithm terminates when any one of the three conditions is satisfied.

As previously mentioned, the processed scattering centers are subtracted from the input
image. This step may cause significant problems if the estimation process is not successful.
Subtraction can introduce artificial peaks due to the mismatch between the actual image
and the simulated image. Therefore, a quality control stage is inserted by Koets before
subtraction [10]. We check whether the simulated image has an improved fit with the
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while none of the stopping conditions are met

extract scattering center by segmentation

classify as localized or distributed

if scattering response is localized

initialize xp, yp and γp

initialize α to best fitting value

determine decimation factors m and n
perform white noise minimization on xp, yp, γp

perform colored noise minimization on xp, yp, γp

estimate α as the best fitting value

elseif scattering response is distributed

initialize xp, yp, φ̄p and Lp

initialize α to best fitting value

determine decimation factors m and n
perform white noise minimization on xp, yp, φ̄p, Lp

perform colored noise minimization on xp, yp, φ̄p, Lp

estimate α as the best fitting value

end if

simulate scatterer with estimated parameters

add this to previously simulated scatters

if error energy decreases with the new scatterer estimate

store estimated parameters

subtract simulated scatterer from original image

else

reject the scatterer

set image pixels within the segment to zero

end if

end while

Table 2.1: Parameter Estimation Algorithm

addition of the newly processed scatterer. If the answer is yes, then there is no problem.
If not, we conclude that the estimation failed, and we set the corresponding image pixels
to zero and continue with the next scattering response. Setting the pixels to zero has the
effect that subsequent modeling does not use pixels in this region.

The overall parameter estimation algorithm outline is given in Table 2.1.

2.7 Cramér-Rao Bound Derivation

In this section we evaluate the performance of our estimator. A very important statistical
tool is the Cramér-Rao Bound. This bound reflects the limitations on performance imposed
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by the assumed model [14]. For unbiased estimators, the CRB provides us with limits on
minimum achievable parameter variances.

Let p(y, θ) be the likelihood function of the observed data y, where θ is the set of unknown
parameters. The Fisher Information Matrix J is defined as:

J = E

{[
∂ ln p(y, θ)

∂θ

]

·
[
∂ ln p(y, θ)

∂θ

]T
}

(2.45)

Cramér-Rao bound matrix is found by inverting the Fisher information matrix J . The diag-
onal entries of this matrix correspond to the Cramér-Rao variance bounds of the unknown
parameters. The derivation of this result can be found in [14] and [20].

The CRB for the parametric model we use have been previously derived by Gerry [6] and
Koets [10]. In [6, 10], the authors treat the observation vector y as complex-valued. This
approach complicates the derivation process. We provide another CRB derivation in terms
of real-valued vectors where we treat the real and imaginary parts of the complex vectors
separately.

The parametric model for a single scattering center is given by

Ẽi(f, φ; θi) = Ai ·
(

j
f

fc

)αi

· exp

(−j4πf

c
(xi cos φ + yi sin φ)

)

·sinc

(
2πf

c
Li sin(φ − φ̄i)

)

· exp(−2πfγi sin φ) (2.46)

The total response of an object can be approximated as the sum of responses of its electri-
cally isolated scattering centers (Section 2.2.5).

Ẽ(f, φ; θ) =

p
∑

i=1

Ẽi(f, φ; θi) (2.47)

The measured frequency domain data D(f, φ) is assumed to consist of a term that exactly
fits the model and a zero-mean complex white Gaussian noise term.

D̃(f, φ) = Ẽ(f, φ; θ) + Ñ(f, φ) (2.48)

Stacking these M × N dimensional matrices into vectors of size MN × 1, we obtain

d̃(f, φ) = ẽ(f, φ; θ) + ñ(f, φ) (2.49)

where ñ ∼ N (0, σ2I). We further stack the real and imaginary parts of these complex
vectors.

S =

[
Re{ẽ}
Im{ẽ}

]

=

[
Re{ẽ1 + ẽ2 + · · · + ẽp}
Im{ẽ1 + ẽ2 + · · · + ẽp}

]

2MN×1

(2.50)

X =

[
Re{ñ}
Im{ñ}

]

2MN×1

, Y = S + X =

[
Re{d̃}
Im{d̃}

]

2MN×1

(2.51)
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where S and X are 2MN × 1 real vectors with X ∼ N (0, σ2

2 I).

The likelihood function of the data vector Y is then a vector Gaussian distribution with

mean S and covariance matrix σ2

2 I.

P (Y ) =
1

(
2πσ2/2

)2MN/2
· exp

{ −1

2σ2/2
· (Y − S)T (Y − S)

}

(2.52)

log P (Y ) = −MN ln(π) − MN ln(σ2) − 1

σ2 · (Y − S)T (Y − S) (2.53)

The partial derivative of the log-likelihood function in Equation 2.53 with respect to a single
parameter θk is given by

∂ log P (Y )

∂θk
=

2

σ2 ·
(

∂S

∂θk

)T

· (Y − S) (2.54)

The (k, q)th entry of the Fisher Information matrix J is given by

Jkq = E

[

∂ log P (Y )

∂θk
·
(

∂ log P (Y )

∂θq

)T
]

(2.55)

Jkq =
4

σ4 ·
(

∂S

∂θk

)T

· E
[
(Y − S)(Y − S)T

]
·
(

∂S

∂θq

)

(2.56)

Jkq =
4

σ4 ·
(

∂S

∂θk

)T

· E
[
XXT

]
·
(

∂S

∂θq

)

(2.57)

Jkq =
4

σ4 ·
(

∂S

∂θk

)T

· σ2

2
I ·
(

∂S

∂θq

)

(2.58)

Jkq =
2

σ2 ·
(

∂S

∂θk

)T

·
(

∂S

∂θq

)

(2.59)

We now need to find the partial derivative of the model term with respect to the unknown
parameters. Assume that θk is a parameter of the ith scattering center. Consequently,
among the p scattering centers that form the total response, only the ith scattering center
model will be a function of θk. We have

∂S

∂θk
=




Re
{

∂ẽi

∂θk

}

Im
{

∂ẽi

∂θk

}



 (2.60)

where ∂ẽi

∂θk is equal to the stacked version of the matrix ∂Ẽi

∂θk . Once we find the partial

derivative of the model Ẽi(f, φ; θi) with respect to each parameter, the derivation will be
complete. These partial derivatives are found below:

∂Ẽi(f, φ; θi)

∂xi
= Ẽi(f, φ; θi) ·

(

−j
4πf

c
cos φ

)

(2.61)
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∂Ẽi(f, φ; θi)

∂yi
= Ẽi(f, φ; θi) ·

(

−j
4πf

c
sin φ

)

(2.62)

∂Ẽi(f, φ; θi)

∂αi
= Ẽi(f, φ; θi) ·

[

j
π

2
+ ln

(
f

fc

)]

(2.63)

∂Ẽi(f, φ; θi)

∂γi
= Ẽi(f, φ; θi) · (−2πf sin φ) (2.64)

We define the argument of the sinc term as u in units of radians.

u =
2f

c
L sin

( π

180
· (φ − φ̄i)

)

(2.65)

Then,

∂Ẽi(f, φ; θi)

∂φ̄i
=Ai ·

(

j
f

fc

)αi

· exp

(−j4πf

c
(xi cos φ + yi sin φ)

)

· ∂sinc(u)

∂u
· ∂u

∂φ̄i
· exp(−2πfγi sin φ) (2.66)

∂Ẽi(f, φ; θi)

∂Li
=Ai ·

(

j
f

fc

)αi

· exp

(−j4πf

c
(xi cos φ + yi sin φ)

)

· ∂sinc(u)

∂u
· ∂u

∂Li
· exp(−2πfγi sinφ) (2.67)

where

∂sinc(u)

∂u
=

∂

∂u
· sin(πu)

πu
=

π2u cos(πu) − π sin(πu)

(πu)2
(2.68)

∂u

∂φ̄i
= − π

180
· 2f

c
L cos

( π

180
(φ − φ̄i)

)

(2.69)

∂u

∂Li
=

2f

c
sin
( π

180
(φ − φ̄i)

)

(2.70)

Since the amplitude parameter A is complex-valued, we separate it into its real and imagi-
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nary parts and treat it as two parameters (A = AR + jAI)
5. Then,

∂Ẽi(f, φ; θi)

∂AR,i
=

(

j
f

fc

)αi

· exp

(−j4πf

c
(xi cos φ + yi sin φ)

)

· sinc

(
2πf

c
Li sin(φ − φ̄i)

)

· exp(−2πfγi sin φ) (2.71)

∂Ẽi(f, φ; θi)

∂AI,i
=j ·

(

j
f

fc

)αi

· exp

(−j4πf

c
(xi cos φ + yi sin φ)

)

· sinc

(
2πf

c
Li sin(φ − φ̄i)

)

· exp(−2πfγi sin φ) (2.72)

For a given set of values θ and noise variance σ2, the CRB computation starts with finding

the partial derivative vectors
(

∂S
∂θk

)

for the non-zero parameters of either the localized

or the distributed model. Then, the Fisher information matrix is formed according to
Equation 2.59. The diagonal entries of the inverse of this matrix gives us the CRB for the
parameters.

2.8 Performance Results versus CRB

In this section, we evaluate the performance of our parameter estimation algorithm on sim-
ulated data. We use the parametric model in Equation 2.2.5 to simulate a single scattering
center response in the frequency domain. We add zero-mean complex white Gaussian noise
with known variance to this model data. Passing this sum through the image formation
process, we obtain a noisy SAR image. We input the simulated image to the parameter
estimation algorithm. This process is repeated for numerous noise realizations. The vari-
ance of the parameter estimates within these simulations are calculated and compared to
the Cramér-Rao Bound. The closer the observed variance is to the bound, the better the
performance.

The performance results are presented versus two important image properties: resolution
and signal-to-noise ratio (SNR). Let us now look at each case separately.

2.8.1 Performance versus Resolution

Resolution in simple terms is the required distance between two scattering centers to be
distinguished as separate responses. It is related to the data collection frequency range.

5If we restrict A ∈ R, then the partial derivative of the model with respect to the real amplitude A would
be equal to the expression in Equation 2.71
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Figure 2.8: Resolution versus Data Collection Range

Wider total apertures and bandwidths result in improved resolution. In Figure 2.8, we can
see that the data collection range of a 6 inch resolution SAR image has twice the total
aperture and bandwidth compared to the 12 inch resolution image. Hence, it can resolve
scatterers twice as close. Since more data is involved in the forming of the image, it is
reasonable to expect better estimation capability with improved resolution.

To avoid confusion, let us clarify that higher or improved resolution means a lower resolution
value, i.e. 6 inch resolution is higher than 12 inch resolution.

A reasonable performance versus resolution study can be done by assuming that scattering
data from an object is collected over a large range. Then, various sized segments of that
data are used to generate the different resolution images. In this study, the parameters
x, y, α, γ, φ̄, L and A are constant along with the frequency domain noise variance σ2.

The experimental procedure is as follows: For a fixed resolution, we first simulate a distrib-
uted scattering response with parameters x = 3.2 m, y = 5.7 m, α = 1, γ = 0, φ̄ = 1.15
rad, L = 0.5 m and A = 1. We add zero-mean white Gaussian complex noise with variance
σ2 = 0.6 to this simulated response. We form the SAR image from the noisy frequency
domain data. We then obtain the parameter estimates using the developed parameter es-
timation algorithm. We repeat this process for 100 different images corresponding to 100
different random noise realizations. We compute the sample variances of the parameter
estimates. The variance data is obtained separately for 1.5, 3, 6 and 12 inch resolution
scenarios. The corresponding Cramér-Rao bounds are also calculated with the designated
parameter values and noise.

In Figure 2.9, we present the obtained estimate variances of the parameters x, y and L in
units of m2 and φ̄ in units of radians2. The CRBs are also shown in the same plot. We
can see that the estimate variances are either equal to the CRBs or very close to them.
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This means that the algorithm is performing as good as possible with the available amount
of information. As expected, higher resolution results in lower parameter variances. The
variances for the 1.5” resolution case are approximately two orders of magnitude lower than
the 12” resolution variances. Even at the lowest resolution, the location parameters have
standard deviations less than 1 cm.

Since the parameter α is discrete-valued, we choose not to plot its variance. Instead, we
plot the probability of incorrect α estimation as a function of resolution in Figure 2.10. At
12 inch resolution, we see that the error probability is 0.4 and we cannot make a reliable
estimate. However, this is an expected result due to the narrow bandwidth and is not an
algorithm incapability. As we know, the α parameter enters the parametric model through

the term
(

j f
fc

)α
. In Figure 2.11, we plot

(
f
fc

)α
versus

(
f
fc

)

for α = 1 and α = 1/2.

This demonstrates the amplitude factor induced by α versus normalized frequency. For 12
inch resolution, we have data from a narrower bandwidth which corresponds to the inner
rectangular region in the figure. Over the narrow bandwidth, the difference between the
amplitude factors for the two α values is very small. Hence, it is very difficult to make an
accurate estimation. However, in the case of higher resolution more data is available (outer
rectangular region in Figure 2.11). The effect of different α values are distinguishable,
leading to very accurate α estimates. A more detailed study of α estimates can be found
in [16].

Similar results are presented for a localized scatterer with parameters x = 4.5 m, y = 2.9
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Figure 2.12: Parameter estimate variances and CRB versus resolution for localized scatter-
ing response with parameters {4.5, 2.9, 1, 0, 0, 0, 1} and σ2
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m, α = 1, γ = 0, φ̄ = 0, L = 0 and A = 1 (Figures 2.12 and 2.13). The frequency domain
noise variance is 0.6. The parameter variances obtained are very close to the CRB for the
localized scatterer case as well.

2.8.2 Performance versus SNR

Signal-to-noise ratio (SNR) is a measure of the amount of noise present in the data. In our
case, it is defined as the ratio of the peak image amplitude to noise standard deviation in
image domain. SNR is expressed in the dB scale as follows:

SNR = 10 log10

(

|pkimage|2
σ2

image

)

(2.73)

Similar to the performance versus resolution study, we simulate a single scattering center
response, add noise to it and form its SAR image. The difference arises in the variance
of the noise added. We first form the image without any noise and determine the peak
image amplitude value. Then, we calculate σimage corresponding to that peak value and
the desired SNR from Equation 2.73.

The relation between the frequency domain and image domain noise variances is a simple
scaling that depends on the imaging process used. Let Ñ ∼ N (0, σ2

freqI) be the frequency
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Figure 2.13: Observed error rate for α estimates versus resolution in 100 trials for localized
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domain noise and N be the image domain noise. They are related as follows:

N(x, y) =
1

MzNz
·

Mz∑

k=1

Mz∑

k=1

Ñ(k, l) · W (k, l) · ej2π(k−1)(x−1)/Mz · ej2π(l−1)(y−1)/Nz (2.74)

It follows that

σ2
image =E[N∗(x, y) · N(x, y)]

=
1

(MzNz)
2 ·
∑

k

∑

l

∑

p

∑

r

E[Ñ∗(x, y) · Ñ(p, r)] · W (k, l) · W (p, r)

· e−j2π(k−1)(x−1)/Mz · e−j2π(l−1)(y−1)/Nz · ej2π(p−1)(x−1)/Mz · ej2π(r−1)(y−1)/Nz

=
1

(MzNz)
2 ·
∑

k

∑

l

σ2
freq · |W (k, l)|2

=σ2
freq ·

1

(MzNz)
2 ·
∑

k

∑

l

|W (k, l)|2 (2.75)

where W (k, l) is the window used during image formation. We thus can determine the
frequency domain noise variance through Equation 2.75 for the desired SNR value.

In Figures 2.14 and 2.15, we present the observed parameter variances from 100 simulations
for distributed and localized scattering responses. The calculated Cramér-Rao Bounds are
also plotted. We see that the CRBs decrease linearly with increasing signal-to-noise ratio.
This is an expected result, since less noise means less degradation, which naturally leads to
better estimation capability. For both distributed and localized scatterer cases, the obtained
parameter estimate variances are very close to the CRB. These results are displayed for the
3 inch resolution case; however, other resolution values have similar plots.

2.9 Fast Algorithm

At this point, we have a parameter estimation algorithm that employs an approximate
maximum likelihood (AML) estimation criterion. The algorithm gives accurate results as
displayed in Section 2.8. However, in some situations we may be willing to compromise
accuracy for faster implementation. Therefore, we develop a modified version of the AML
algorithm.

The most time-consuming stage of the algorithm is the nonlinear minimization. To reduce
computation time, we may stop the minimization in a fewer number of steps. This can be
achieved through an optimization parameter within Matlab that specifies the maximum
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Figure 2.14: Parameter estimate variances and CRB for distributed scattering response
with parameters {3.2, 5.7, 1, 0, 1.15, 0.5, 1} versus SNR at 3 inch resolution
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Figure 2.15: Parameter estimate variances and CRB for localized scattering response with
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number of iterations per variable. In the AML algorithm, this parameter is set to 100. By
decreasing it, we can terminate the minimization earlier.

We performed a study to understand the relationship between computation and accuracy
as we vary the maximum number of iterations parameter. We simulated data at 25 dB SNR
level and applied the algorithm for different values of this parameter, {0, 10 ,20, 30, 40,
50}. We estimated the mean-squared error in the parameter estimates by averaging over
200 realizations. In Figure 2.16, we display these results for a distributed scatterer at 3 inch
resolution. The six data points in the plots are the MSE of the parameter of interest versus
the average computation time, for the six corresponding values of the maximum number of
iterations parameter. The CRBs are also plotted as the horizontal lines. Similar results are
presented for localized scattering centers in Figure 2.17.

We observe that the MSE decreases very slowly at the beginning of the minimization process.
Then, it displays a steep decay over a small number of iterations. No significant decrease
in MSE is observed after this stage. In order to save on computation time, we can stop the
process immediately after the steep decay takes place. Since most of the error minimization
has already been completed, the earlier termination is at the expense of only a small perfor-
mance decay. We see from Figures 2.16 and 2.17 that at the end of 30 iterations, the MSE
values have decreased to a level very close the CRB. Therefore, we choose the maximum
iterations parameter to be 30. However, this choice is subject to change depending on the
application and the desired accuracy. For example, if the accuracy needed on the location
estimates is within 1 cm, then no iterations are needed. In Figure 2.16, we see that even the
initial estimate MSEs are below 10−4 m2, which correspond to a less than 1 cm deviation
from the actual location.

In the AML algorithm, after obtaining the parameter estimates, we used to simulate the
response with those estimated values and subtract this from the actual image. Since the
parameter estimates obtained by the fast algorithm are not very accurate, the simulated
response is more likely to differ from the response present in the starting SAR image. Sub-
traction of the simulated response may not totally eliminate the processed peak. Therefore,
after obtaining the parameter estimates, we set the image pixels within the processed region
to zero as described in [10]. We then continue with the next scattering center.

2.10 Structure Selection

2.10.1 Introduction

In Section 2.3 we developed estimation algorithms for both distributed and localized scat-
tering centers. In doing so, we assumed prior knowledge of whether the scatterer was
distributed or localized. In this section we address this structure selection problem in
detail. We first present the problem statement. This is followed by a study that demon-
strates the problem’s limits; we try to establish qualitative rules on the distinguishability
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Figure 2.16: Parameter estimate variances and CRB for distributed scattering response with
parameters {3.2, 5.7, 1, 0, 1.15, 0.5, 1} versus average computation time at 3 inch resolution
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of the two structures, so that we can have an understanding of what to expect as detection
performance. We then propose three different structure selection tests: a GLRT-based (gen-
eralized likelihood ratio test), an L̂-based (estimated length test) and an image-based test.
We finally present numerical results and compare the three tests in terms of performance
and computational complexity.

Problem Statement

The parametric model for a single scattering mechanism is given as follows (Section 2.2.6).

Ẽ(fxn, fyn) = A ·
(

j
√

fxn
2 + fyn

2

)α

· exp

(

−j2π

(
fxn

β
xpηx + f2ypηy

))

·sinc




π
√

fxn
2 + fyn

2Lpηy

2 sin(φm/2)
sin
(
tan−1(fyn/fxn) − φ̄pφm/2

)





· exp(−f2γp) (2.76)

The last two terms in the model, which are the exp(·) and the sinc(·) terms, are related
to the aspect dependence of the response. However, these two terms do not appear in the
model at the same time. For localized scatterers, the parameters Lp and φ̄p are zero, so the
sinc(·) term equals one. The remaining set of parameters is θℓ = {xp, yp, α, γp, A}. In the
case of distributed scatterers, the parameter γp is zero, so the exp(·) term equals one. The
set of parameters for a distributed scattering center is θd = {xp, yp, α, φ̄p, Lp, A}.

We can see the structure difference clearly in the following demonstration. In Figure 2.18,
the magnitude frequency domain responses of two scattering centers are displayed: a local-
ized scatterer (Lp=0, γp=0.3) and a distributed scatterer (Lp=8). When we look at these
magnitude responses, we observe a very small exponential decay along the fy direction for
the localized case and a |sinc| profile along the same direction for the distributed case,
corresponding to the different aspect dependences.

Our main goal is to estimate the parameters of the scattering mechanisms present in a
given SAR image. In order to estimate the parameters, we need to know which one of
the two structures is present. By detecting the structure, we identify the corresponding
parametric model and the set of parameters to estimate. After this, we can proceed with
the actual parameter estimation stage described in Section 2.3. In some cases the detection
and parameter estimation steps are combined, as we will see below.

The difficulty of the structure selection problem is that localized scattering centers are
well modeled as distributed responses with L ≈ 0. The models do not exactly coincide
except for the special case of a localized model with γp = 0 and a distributed model with
Lp = 0. However, for small Lp values, the difference between them is very small, so that
noisy data can be well-modeled by either choice. In Figure 2.19(a), distributed responses
with various Lc values are shown (Lc: length in crossrange resolution units). The Lc = 0
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Figure 2.18: Magnitude frequency domain responses of localized and distributed scatterers
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Figure 2.19: Distributed scattering center responses for various Lc and φ̄p values

response is identical to a localized scattering response with γ = 0. We see that for small
Lc, the localized and distributed responses are indistinguishable. Figure 2.19(b) displays
distributed scatterers with Lc = 6 and various φ̄p values. We observe that as the tilt angle
increases, the response starts to look like two localized scattering responses.

We want to get an idea on the distinguishability of the two structures in an algorithm-
independent way, so we perform the following study. We look at the fit error when a
distributed and a localized model are used to model a distributed scattering center with
length Lc. For each value of Lc, we generate 20 realizations of the scattering response with
different center locations (xp and yp) to account for estimation differences as a function of
location. For each realization, we obtain approximate maximum likelihood estimates of the
parameters θ̂AML,ℓ under the localized response assumption. We construct the image s(θℓ)
with the estimated parameters. We compute the normalized difference |||s(θℓ)| − |d|||/||d||
where d is the simulated distributed response. We also compute ||n||/||d|| where n is the
noise corresponding to the specified SNR value. In Figure 2.20, we plot the minimum, mean
and maximum of these norm ratios versus Lc for 30 dB and 20 dB SNR. In qualitative terms,
we expect to be able to reliably discriminate between localized and distributed scattering
centers only when the differences in the model norms exceed noise. As seen in Figure 2.20,
for a signal-to-noise ratio of 20 dB, an Lc value greater than about 1.6 is required to reliably
detect a distributed scatterer. This value decreases to Lc ≈ 1 for the 30 dB SNR case.

Structure Selection Tests

In previous parameter estimation algorithms [10, 6], either the structure is assumed to
be known or it is estimated from the image segmentation. We propose three different
approaches for structure selection: a GLRT approach, a test based on the estimated length,
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L̂ in the distributed model, and a computationally fast image based approach.

The structure selection problem is a hypothesis testing problem. We need to decide between
the following two hypothesis:

Hℓ : scattering center is localized.

Hd : scattering center is distributed.

We define the probability of false alarm PFA as the probability of deciding that the scatterer
is distributed when in fact it is localized. The PD (probability of detection) is defined as
the probability of correctly classifying distributed scattering centers. Let us now look at
the proposed structure selection tests.

paragraphGLRT-Based Structure Selection

The generalized likelihood ratio test (GLRT) based structure selection involves comparing
the ratio of the likelihood functions under the two hypothesis to a threshold.

f(d|Hd, θ̂d)

f(d|Hℓ, θ̂ℓ)

Hd
>
<
Hℓ

ηGLRT (2.77)

With the Gaussian noise assumptions, the likelihood functions are given as follows:

f(d|Hd, θ̂d) =
1

πMzNz · |Σ|
· exp

[

−(d − s(θ̂d))
HΣ†(d − s(θ̂d))

]

(2.78)

f(d|Hℓ, θ̂ℓ) =
1

πMzNz · |Σ|
· exp

[

−(d − s(θ̂ℓ))
HΣ†(d − s(θ̂ℓ))

]

(2.79)

where θ̂d and θ̂ℓ are the set of parameter estimates obtained by the approximate maximum
likelihood parameter estimation algorithm, assuming that the structure is distributed and
localized respectively. When we take the logarithm of the ratio and cancel common terms,
the test given by Equation 2.77 reduces to

||d − s(θ̂ℓ|Hℓ)||2Σ† − ||d − s(θ̂d|Hd)||2Σ†

Hd
>
<
Hℓ

η′GLRT (2.80)

If the difference between the weighted error norms of the localized model fit and the dis-
tributed model fit is greater than a threshold, we decide in favor of Hd; if it is less than the
threshold η′GLRT , we decide on Hℓ. The threshold η′GLRT is user selected.

For a specific choice of the threshold η′GLRT , the GLRT test is in fact equivalent to the
minimum description length (MDL) test [15]. The MDL test is a very common way of
treating model selection problems. In this test, the minimum description length of the
model under each hypothesis is calculated as follows:

MDL(H) = −2 log fθ̂(Y |H) + m log n (2.81)
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where m is the number of parameters in the model and n is the number of data points.
Then, a decision is made in favor of the model with the smallest length. In our case, the
MDL test can be stated as

MDL(Hℓ)
Hd
>
<
Hℓ

MDL(Hd) (2.82)

−2 log fθ̂ℓ
(d) + mℓ log n

Hd

>
<
Hℓ

− 2 log fθ̂d
(d) + md log n (2.83)

Substituting the expressions for the log-likelihood functions and canceling common terms,
we obtain

2||d − s(θ̂ℓ|Hℓ)||2Σ† + mℓ log n
Hd

>
<
Hℓ

2||d − s(θ̂d|Hd)||2Σ† + md log n (2.84)

||d − s(θ̂ℓ|Hℓ)||2Σ† − ||d − s(θ̂d|Hd)||2Σ†

Hd
>
<
Hℓ

(md − mℓ) ·
log n

2
(2.85)

The difference between the parameter vectors θd and θℓ is that θd contains the two real-
valued parameters {φ̄p, Lp} whereas θℓ contains the single real-valued parameter γp. Thus,

md − mℓ = 6 − 5 = 1, and for η′GLRT = 1 · log n
2 , the GLRT test is the same as the MDL

test.

As seen in Equation 2.80, in order to perform the GLRT test, we need to obtain both θ̂d

and θ̂ℓ. This means that we need to fit both the distributed and the localized model to the
data. This is a costly procedure. Also after the decision, the estimates corresponding to
the rejected structure assumption are discarded and the computation performed to obtain
those estimates is wasted. The computational cost of the GLRT test motivates us to develop
some heuristic tests with possibly inferior performance but lower computational cost.

paragraphL̂-Based Structure Selection

In the L̂-test, we assume that the response of interest is distributed. Under this Hd as-
sumption, we obtain the AML estimates of the corresponding parameters, θ̂d = [x̂p, ŷp, α̂,
ˆ̄
pφ, L̂p, Â]. We then perform a threshold test on the estimated length L̂p.

L̂p

Hd

>
<
Hℓ

ηL (2.86)

If L̂p is greater than the user-selected threshold ηL, we decide that the scattering center is

distributed. Since we already have the corresponding parameters estimates θ̂d, the process-
ing of the peak is completed. If L̂p < ηL, we choose Hℓ. In this case, we have to fit the

localized model to the data and obtain θ̂ℓ.
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Figure 2.21: Estimation of -3 dB width of a scattering response by parabola fitting

The L̂-test requires less computation than the GLRT test in the case of distributed scatterers
by eliminating the localized model fitting stage. However for localized scatterers, the L̂ and
the GLRT tests are equally costly in terms of computation.

paragraphImage-Based Structure Selection

A computationally fast structure selection test can be derived by exploiting the shape of
the scattering center response in the SAR image. We know that the crossrange extents of
extracted distributed scattering center responses are larger than that of localized scattering
centers.

The algorithm we propose is as follows: As a result of image segmentation, we have a
region of high energy extracted. We further extract a strip of crossrange pixel samples from
that region, passing through the peak pixel. This results in a vector of a small number
of samples (usually between 3-20). We normalize these samples to have a peak value of
one. We then fit a parabola, ax2 + bx + c to the samples using a least-squares fit for the
parameters (a, b, c). Next, we select a threshold ν at which to estimate the width of the
scatterer’s crossrange response. We choose the -3 dB level, which corresponds to a value
of ν = 10−3/20. When we equate ax2 + bx + c to ν = 10−3/20 and solve for the roots, we
obtain x1 and x2 (Figure 2.21). The distance between these two roots correspond to the -3
dB width, Ŵ = |x1 − x2|. The image-based hypothesis test for a localized or distributed
scattering center is given by

Ŵ
Hd
>
<
Hℓ

ηW (2.87)

where ηW is a user-selected threshold.

A parabola is chosen because for localized scatterers, the crossrange response is essentially
the point spread function of the radar imaging process in the crossrange direction, and for

51



most windows used in image formation, this response is well-modeled by a parabola. For a
distributed scattering center, the parabola is not a good fit, but still gives an estimate Ŵ
which is above any threshold ηW chosen for practical false alarm probabilities. In addition,
the parabola gives a real valued estimate of the width (not quantized by pixel samples),
which provides robustness to the center location of the scattering center.

The image-based test is computationally much simpler than either the GLRT or the L̂ test.
By using this test, we make a decision on the structure of the scatterer prior to any model
fitting. After the structure is selected, we only estimate the parameters of the corresponding
selected model structure. This way, no computational power is wasted by fitting a rejected
structure model. On the other hand, this algorithm is expected to have inferior performance
because it only uses a subset of the available data and prior information about the scattering
center responses.

Numerical Results

In this section we evaluate the performance of the proposed structure selection tests pre-
sented in the previous section. This evaluation is based on the probability of detection
versus probability of false alarm plots (ROC curves) of the tests, obtained through Monte
Carlo simulations.

We generate 200 localized scattering center responses in 20 dB SNR. We apply the proposed
tests to these scattering centers for various choices of test thresholds. We calculate the
probability of false alarm (the probability of classifying localized scatterers as distributed
responses) for each of the threshold values. Following this, we simulate 200 distributed
scatterers with fixed length in 20 dB SNR. We again apply the tests with the same threshold
values and obtain the corresponding probabilities of detection (the probability of correctly
classifying distributed scatterers). Finally, for each threshold value, we plot the detection
probability versus the false alarm probability, which gives us the ROC curve. Several curves
are obtained by varying the length of the distributed scattering centers.

In Figure 2.22 and Figure 2.23, the ROC curves for the GLRT test and the L̂ test are
presented respectively. We observe that for distributed scatterers with length less than or
equal to 0.5 crossrange resolutions, the tests cannot perform better than chance. As the
length of the scatterer increases, the performances improve. For distributed scatterers with
Lc ≥ 1.5, both tests give nearly perfect results. Given their similar overall performance,
the L̂ test is preferred over the GLRT test due to its lower computational cost.

The ROC curves for the image-based test are seen in Figure 2.24. Unlike the GLRT and
the L̂ tests, we do not observe nearly perfect results for an Lc value of 1.5. However, the
performance is still very good. When Lc ≥ 2, the image-based test also provides almost
perfect detection capability. As we mentioned before, this test has much lower computa-
tional cost than the other two tests. Therefore, despite the slightly inferior performance, we
choose the image-based test as the structure selection test to be implemented in our main
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Figure 2.22: Detection probability (PD = P (Hd|Hd) versus false alarm probability (PFA =
P (Hd|Hℓ) of the GLRT Test in 20 dB SNR

Lc PD

0.5 0.055
1.0 0.235
1.5 0.765
2.0 0.995

Table 2.2: Detection probabilities versus distributed scattering center length for the image-
based test with ηW = 1.5

parameter estimation algorithm. The threshold we choose is ηW = 1.5 which corresponds
to a false alarm probability of 0.01. The detection probabilities for various Lc values are
presented in Table 2.2. If better performance is desired, the GLRT or the L̂ test can be
implemented.

2.11 Measured Data Results

2.11.1 Introduction

In this section we evaluate the performance of the parameter estimation algorithm we
have developed using measured data. The measured data we use are SAR images of the
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Figure 2.23: Detection versus false alarm probability of the L̂ Test in 20 dB SNR
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Figure 2.24: Detection versus false alarm probability of the Image-based Test in 20 dB SNR
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Figure 2.25: SLICY Test Target

test target SLICY (Sandia Laboratories Implementation of Cylinders II) [10]. We first
introduce this target and present the data collection and image formation scenarios used
to obtain the SAR images. We then discuss some difficulties encountered due to the low
resolution (12” resolution) of these images. We propose some algorithm modifications to
overcome these difficulties. Following this, the results of the modified parameter estimation
algorithm are presented. We also generate synthetic SLICY images using the same scenario
as the measured data. The synthetic images provide us with a better understanding of the
scattering characteristics of the target and allow us to make comparison and calibration.

2.11.2 SLICY Test Target

The SLICY target is a metal object that consists of several simple scattering structures
(Figure 2.25). Its base is roughly 2.75 m × 2.45 m, with a height of 0.75 m. There are two
dihedrals and a horizontal quarter cylinder in front of the base which are all distributed
scattering geometries. On top of the base, two upright cylinders of heights 0.9 m and 0.45
m are placed. There is also a trihedral formed by two right triangular plates with a common
side length of 0.3 m. The cylinders and the trihedral are localized scatterers.

There are two image data sets of SLICY for 15◦ and 17◦ azimuth angles. At each data set,
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Figure 2.26: Synthetic SLICY images at 3” and 12” resolutions at a 13◦ aspect angle

SAR images are provided at 274 aspect angles rotating around the target. To form a single
image, frequency domain data at a 42×42 uniform grid of spatial frequencies are used. The
center frequency is 9.599 GHz. The bandwidth is 0.591 GHz in the downrange direction
and 0.4923 GHz in the crossrange direction. This data is multiplied by a Taylor window
with a sidelobe level of -35 dB and n = 4, and then zero-padded to a 54 × 54 matrix. The
SAR image is obtained by performing a 2D-IFFT on this matrix.

2.11.3 Algorithm Modifications

The SLICY data sets contain images at 12” resolution. The low resolution of the images
effects the validity of the isolated scattering center assumption that allowed us to decouple
the parameter estimation problem and perform sequential processing. This argument is
more clearly understood with the following demonstration of two synthetically generated
SLICY images with the same aspect angle at 3” and 12” resolution. In Figure 2.26(a) we see
the 3” resolution image at a 13◦ aspect angle. Three strong isolated responses are observed:
the two cylinders and the trihedral. When we aspect at the 12” resolution image, we see
that the responses from the right cylinder and the trihedral cannot be distinguished. It is
not possible to extract regions that contain the response from only one of these scatterers;
therefore, processing them sequentially is not a good strategy. At the expense of increasing
computational complexity, these two responses must be processed simultaneously. This
requires us to modify the image segmentation algorithm described in Section 2.6.1, so that
such cases will be detected and processed accordingly.

The modified image segmentation is the same as the original segmentation algorithm until
the -3 dB level below the peak is reached while processing the pixels. At this point, the
decision about the number of scatterers present in the region is made. The MSTAR Peak
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Extractor program [4] is used for this purpose. This program first detects the local maxima
in a SAR image. Then, it fits parabolas to the extracted local maxima to obtain location and
amplitude estimates. The peaks which are no less than a user-specified amount (0.5 pixels
in our case) apart are output by the program, along with their corresponding estimated
locations and amplitudes. After we run the MSTAR peak extractor, we need to determine
how many of the extracted peaks lie in the processed image region (above the -3 dB level).
We propose an ad-hoc solution to this model selection problem; however, more sophisticated
model selection methods could have been used, e.g. MDL as discussed in Section 2.10.1.

If there is only one peak in the region, then we conclude that there is a single scattering
center. If the number of peaks is more than one, we look at the peaks’ relative downrange
locations. We know that in the case of a distributed scattering center with a high tilt angle,
we may observe a two-humped profile in the response. However, the downrange location
between the two humps (peaks) is very small for a 12” resolution scenario. Therefore, we
pick a threshold of 0.25 pixels and assume that if the downrange locations of the two peaks
differ less than 0.25 pixels, then they belong to a single distributed scattering response.
Otherwise, we assume that they are different localized responses.

For the case where more than one peak is observed, the structure decision is also made within
the image segmentation as described above. We know that the current decision strategy
is ad-hoc; however since we cannot separate the responses from the different scatterers, we
cannot apply the more sophisticated structure selection tests described in Section 2.10. If
more reliable results are desired, new methods have to be developed.

Following the order selection stage, we continue with processing the pixels between the
-3 dB and -20 dB levels. At this stage in the original algorithm, we confine our interest
to segment number 1 and do not grow any of the other segments. However, for the 12”
resolution case, the scatters are located closer to each other and it is important to keep track
of each segment in order to extract their borders accurately. For this reason, we modify
the algorithm and process a pixel as follows: We search the eight neighbors of the pixel of
interest and distinguish among three possible cases.

1. no neighbors are assigned to a segment

2. one or more neighbors are assigned to a single segment

3. one or more neighbors are assigned to multiple segments

The first case corresponds to a new peak, so the pixel is assigned to a new segment. In the
second case the pixel is assigned to the neighboring segment. The third case corresponds to
a bordering pixel. We give priority to vertical and horizontal neighbors above the diagonal
neighbors and we assign the pixel to the lowest indexed vertical or horizontal neighboring
segment. If all the assigned neighbors are diagonal, then we choose the lowest indexed
segment among them.

57



Keeping track of all the segments throughout the algorithm is very costly, especially for
large-sized images. We know that an extracted scattering center segment is usually confined
in a small area. Therefore, given the peak location of a response, we form a sub-image that
takes the peak location as center and extends 5 pixels in all four directions (11×11 sub-
image). We perform the described modified segmentation algorithm on this sub-image. At
the end, we check whether the extracted segment contains any of the border pixels of the
sub-image. If so, this means that the size of the sub-image was not large enough. We
increase the size and repeat the segmentation process. Otherwise the algorithm terminates.

Besides the modifications on the image segmentation algorithm, we also make a few changes
in the parameter initialization stage. The location parameters xp and yp are initialized as
described in Section 2.6.3 when there is a single peak above the -3 dB level. If there are
multiple peaks, the location initialization is performed using the MSTAR peak extractor’s
location estimates. For multiple localized scatterers the exact MSTAR estimates are used.
For the case of distributed scatterers, the midpoint of the two peaks’ locations is used as
an initial estimate for the parameter estimation algorithm.

The only other initialization difference is on the parameter φ̄p. The algorithm described in
Section 2.6.3 for φ̄p initialization does not give satisfactory results for the 12” resolution case.
At this resolution the total angular aperture is only about 3◦. The narrow total aperture
does not allow us to observe the sinc profile wide enough to make a reliable estimation,
based on the relative location of the sinc’s peak. Inaccurate initial values that are much
larger than the actual value are observed to cause the numerical minimization algorithm to
converge to a wrong local minima. Therefore, we choose to initialize this variable to zero.

2.11.4 Numerical Results

The modified parameter estimation algorithm is applied to the SLICY data sets consisting
of 274 images for both 15◦ and 17◦ angles of incidence. We also generate a set of images
from Xpatch simulation data at a 15◦ azimuth. The synthetically generated images provide
us with a better understanding of the scattering structures of the target, since they are free
of measurement errors.

We focus our interest to the two upright cylinders and the trihedral on SLICY which are all
localized scattering centers. The distributed responses of the two dihedrals and the quarter
cylinder in front of the target are not clearly observed in the measured data set. These
responses would be best seen at a 0◦ aspect angle. However, the data set we have starts
from a 2◦ aspect angle and ends with 358◦.

For localized scatterers, the set of parameters is {xp, yp, α, γp, A}. As discussed in Sec-
tion 2.8.1, we are not capable of reliably estimating the α parameter from 12” resolution
images. Therefore, we will limit our interest to the downrange and crossrange location
parameters xp and yp, the angle response parameter γp and the magnitude of the complex
amplitude |A|.
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Figure 2.27: Parameter estimates of the right cylinder versus aspect angle from measured
SLICY data set at 15◦ azimuth

We will present the estimation results of the 15◦ azimuth SLICY data set since we also have
the synthetically generated images at that azimuth. The results for the 17◦ are similar.
In Figure 2.27 we see the parameter estimates of the right cylinder versus aspect angle.
The results are presented for the aspect angles where the response was observed clearly.
About 90◦ and 180◦ aspect angles, the dihedral flashes from the side of the target prevent
us from observing an isolated response from the right cylinder. We also cannot see a clear
response about 270◦ due to the left cylinder’s blocking and between 315◦ and 360◦ due to
the trihedral’s blocking.

In Figure 2.28 we present similar results for the left cylinder. For both cylinders, the
amplitude of the response increases as the flat area in front of the cylinder gets wider and
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Figure 2.28: Parameter estimates of the left cylinder versus aspect angle from measured
SLICY data set at 15◦ azimuth

so more energy is reflected back to the radar. We observe large variations in the location
estimates. We believe that most of this variation is caused by inaccurate target centering
in the scene for reasons we discuss later in this section. There is also a slow fluctuation
observed in the location parameters. This is due to the change in the relative location of the
cylinder reflection with respect to the scene’s reference point as the aspect angle changes (as
we rotate around the target about a rotation axis). The γp estimates also display variations;
however, in most cases the value is between -2 and 2. We do not have a clear understanding
of the source of the high variations in γp and |A| parameter estimates.

The estimation results for the trihedral are presented in Figure 2.29. The trihedral’s re-
sponse can be observed from aspect angles between -50◦ (310◦) and 50◦. At -45◦ and 45◦
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Figure 2.29: Parameter estimates of the trihedral versus aspect angle from measured SLICY
data set at 15◦ azimuth

aspect angles, we see one of the triangular plates from its broadside. This structure is like
a dihedral and it has a distributed response. However, the structure selection algorithm
fails to detect these distributed responses. This is not surprising, since the length of the
dihedrals is 12”, which is definitely less than 1.5 crossrange resolutions. For this length, the
structure selection algorithm is not expected to give correct results. The same situation is
encountered at 90◦ and 270◦ aspect angles as well, where the dihedral base and the side of
the quarter cylinder form distributed scatterers with length 12”. These responses are not
classified as distributed either.

The parameter estimation results for the right cylinder and the left cylinder from the syn-
thetic data set are provided in Figures 2.30 and 2.31. The variations in the location estimates
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Figure 2.30: Parameter estimates of the right cylinder versus aspect angle from synthetic
SLICY data set at 15◦ azimuth

are much smaller for the synthetic data compared to the measured data. The fluctuation
of the estimates due to the change in the relative location of the scatterers versus aspect
angle is clearly observed. The small variations in the magnitude of the amplitude parameter
|A| across some aspect angle intervals are a result of the interference from other scattering
structures which prevents us from observing isolated responses.

The parameter estimates of the trihedral from the synthetic data are presented in Fig-
ure 2.32. As in the case of the two cylinders, the estimate variances are smaller for the
synthetic data compared to the measured data results. The slope observed in the location
estimates are due to the fact that as the aspect angle changes (as we rotate around the tar-
get about a rotation axis), the relative location of the trihedral with respect to the scene’s
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Figure 2.31: Parameter estimates of the left cylinder versus aspect angle from synthetic
SLICY data set at 15◦ azimuth
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reference point also changes. In the -50◦ to 50◦ interval which we observe the trihedral
response, we see a portion of the sinusoidal location variance around the target. We claim
that the amplitude of the sinusoid is small because the trihedral is close to the rotation
axis, so the relative location change is not large. The variations observed in the γp and
|A| parameter estimates are due to the fact that the responses from the trihedral are not
clearly isolated from the responses of the two cylinders for most aspect angles. For exam-
ple, for aspect angles between -5◦ and 20◦, the scattering response from the right cylinder
interferes with the trihedral response (see Figure 2.26b). The exceptions occur at aspect
angles approximately between -25◦ and -8◦, where the left cylinder is well separated and
the right cylinder is blocked (by the trihedral), so that clear isolated trihedral responses are
observed. Between those aspect angles, the estimation results obtained are much better;
the γp estimates are very close to zero and the |A| estimates increase almost linearly.

For all three scatterers, we have observed that the location estimates display much smaller
variation for the synthetic data when compared to the measured data. This observation
suggests us that the variations in the measured data results are due to target centering
inaccuracies. The argument about target centering inaccuracies is supported by the fact
that when we aspect at the images one after the other, we see the same scatterer’s response
moving within the image in the range of 1 to 2 pixels. We want to calibrate these results
using the synthetic data location estimates.

The calibration is performed by shifting the measured data locations, so that the left cylinder
response is aligned in measured and synthetic data. The location parameters of the right
cylinder as a result of this process are displayed in Figure 2.33. When we compare the
original estimates in Figure 2.27 with the calibrated estimates, we observe a significant
reduction in variation. This observation strengthens the claim that the measured data
result variations are mostly due to target centering inaccuracies.

We also perform an alignment with respect to the right cylinder. The left cylinder’s cali-
brated location estimates as a result of this process are presented in Figure 2.34. Similarly,
the estimate variances are reduced with calibration. The calibrated location estimates of
the trihedral are also presented in Figure 2.35.

We want to compare the parameter estimate variances obtained from the measured data
to the Cramér-Rao Bounds. We choose the trihedral response between -25◦ and -8◦ aspect
angles to make this comparison because we are able to observe a relatively isolated response
within this interval.

In order to estimate the variance in the parameter estimates, we need to know the correct
values of the parameters. However, we do not have exact information about the scene’s
reference point and the rotation axis; therefore, we cannot compute the parameter values.
Instead, we assume that the estimated values from the synthetic data are correct.

We focus our interest to aspect angles between -25◦ and -8◦. There is an average of 0.1937
pixel difference in the downrange location estimates and an average of 0.7414 pixel difference
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Figure 2.32: Parameter estimates of the trihedral versus aspect angle from synthetic SLICY
data set at 15◦ azimuth
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Figure 2.33: Calibrated location estimates of the right cylinder versus aspect angle from
measured SLICY data set at 15◦ azimuth
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Figure 2.34: Calibrated location estimates of the left cylinder versus aspect angle from
measured SLICY data set at 15◦ azimuth
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Figure 2.35: Calibrated location estimates of the trihedral versus aspect angle from mea-
sured SLICY data set at 15◦ azimuth
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in the crossrange location estimates between the calibrated measured data results and the
synthetic data results. We believe that this difference is due to the data collection and
image formation procedure mismatch between the measured and the synthetic data sets.
We compensate for this mismatch by shifting the synthetic data estimates by the average
differences in both directions. We assume that these shifted synthetic data results are the
true values of the parameters. We then estimate the standard deviation in the calibrated
measured data results.

stdev(x̂p) = 0.0877 pixels

stdev(ŷp) = 0.1285 pixels

stdev(γ̂p) = 0.3194

To calculate the CRBs of the parameters, we first estimate the noise variance in the mea-
sured SLICY images: σ̂2

image = 0.002. We again assume that the synthetic data estimates
are the true values of the parameters. By using these parameter values and the estimated
noise variance, we calculate the CRBs as explained in Section 2.7. As an example, let us
choose the -17◦ aspect angle. The square root of the CRBs are approximately 1 × 10−2

pixels for xp and yp and 0.0480 for γp.

When we compare the estimate standard deviations with the calculated CRB square roots,
we observe about one order of magnitude difference. One reason for this difference is the
interference form other scatterers. Also, the calibration procedure above effectively results
in the trihedral location error variances to be the sum of the error variances for the trihedral
and the left cylinder. Another possible reason is the mismatch between the parametric model
and the actual response. For the -17◦ aspect angle, we calculate the average fit error power
between the measured trihedral response and the localized model fitted to the response to
be 0.3195. This value is much greater than 0.002 which is the estimated noise variance;
suggesting the presence of interfering responses and a possible model mismatch.

The synthetic SLICY data we have used is generated using a solid model. We have also
applied the estimation algorithm to another synthetic SLICY data set that is generated
using a faceted model. The parameter estimates of the two cylinders obtained from this
data set are presented in Figures 2.36 and Figure 2.37. We observe that the γp and
amplitude estimate variances are unexpectedly high. However, these estimates seem to be
fluctuating within a band of values according to a pattern. In order to detect a possible
pattern, we estimate the power spectral densities of these parameter estimates using a
periodogram spectral estimator [20]. We use the γp and A estimates of the right cylinder
between 50◦ and 220◦ aspect angles. We remove the DC component by subtracting the mean
from these estimates. The resulting periodogram spectral estimates φ̂A(f) and φ̂γp(f) are
displayed in Figure 2.38.

In both parameters we observe frequency components at 0.12 deg−1, which corresponds to
a fluctuation with a period of approximately 8.3 deg. This value corresponds to a total
number of about 43.2 periods around the cylinder. We believe that this effect is caused
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Figure 2.36: Parameter estimates of the right cylinder versus aspect angle from synthetic
SLICY data set generated from faceted model at 15◦ azimuth
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Figure 2.37: Parameter estimates of the left cylinder versus aspect angle from synthetic
SLICY data set generated from faceted model at 15◦ azimuth
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Figure 2.38: Estimated power spectral densities of the right cylinder’s γp and A parameters
obtained from synthetic data
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by the faceted model, where the cylinder surfaces are approximated as regular polygons
with 44 faces when synthetic data is generated. The amplitude of the response changes as
the angle between the direction of illumination and the normal to the flat strip changes.
Consequently, the γp parameter varies to capture the changes in the amplitude versus the
aspect angle.

2.12 Summary

We have developed an automated algorithm that extracts features of scattering mechanisms
present in a SAR image. The scattering responses are assumed to fit a parametric model.
The algorithm obtains estimates of the model parameters that best represent the given data,
according to an approximate maximum likelihood criterion. The parameters are describe
the location, orientation and geometry of the scatterers and their estimates constitute the
extracted feature vectors.

A statistical evaluation of the algorithm’s performance can be made by using the Cramér-
Rao Bound. We have derived the CRB of the parameters in the model that correspond to
the minimum achievable estimate variances by unbiased estimators. Simulations on noisy
scattering responses demonstrate that our algorithm achieves variances that are very close
to the CRBs.

We have also presented an extensive study on the classification of scattering centers as
localized or distributed structures. We have proposed three different structure selection tests
and displayed performance results through simulations. We have shown that by using these
tests, we are capable of distinguishing localized scatterers from distributed scatterers with
lengths longer than approximately 1.5 crossrange resolutions. A possible future study would
be to increase the robustness of the structure selection tests to closely spaced scattering
responses.

We have then modified our algorithm to be applied to low resolution measured data and
obtained parameter estimates for large sets of image data of the test target SLICY. However,
these modifications were based on insight. A more detailed study is suggested for processing
low resolution images. We have also applied the algorithm to Xpatch simulated data sets.
We have used these results to interpret and calibrate the measured data results.
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3. MODEL-BASED CLASSIFICATION OF RADAR

IMAGES

3.1 Introduction

In this chapter, a Bayesian model-based imaging and decision approach is presented for
classification of radar images. The approach provides a structured, implementable, scal-
able means for managing complexity of the hypothesis set and bypassing the complexity of
joint distributions on image pixels. Model-based classification, or pattern matching, com-
bines uncertainty in both the object class models and the sensor data to compute posterior
probabilities of hypotheses. The Bayesian formalism allows clear and explicit disclosure
of all assumptions. The pattern matching permits tractable performance estimation and
provides robustness against environments previously not measured, and hence not available
for construction of image templates.

3.1.1 Problem Complexity

Classification of radar images, like many image inference tasks, is characterized by a com-
plex hypothesis space. The hypothesis set consists of M classes, or objects; typical cases
are 8 ≤ M ≤ 32. The complexity arises in that each object may be observed in a variety of
poses, configurations, articulations, and environments, thereby resulting in an intractable
density function for the radar image conditioned solely on the object class. To manage
the complexity, object classes are each expressed as a mixture density of subclasses. Each
subclass is defined by a deterministic description of object pose, configuration, articulation,
occlusion, sensor orientation, etc. Additional variability within subclasses is modeled sto-
chastically to account for object differences due, for example, to manufacturing variations
or wear. The number of enumerated subclasses explodes exponentially; a typical applica-
tion might dictate 1012 states for each hypothesis class [24]. Moreover, an application may
dictate that many more than M decision classes be formed by defining sets of individual
subclasses, Hij ; e.g., the configuration of an object may be an important distinguishing
characteristic.

Likewise, the classification of radar images is characterized by a high-dimensional observa-
tion space defying a direct random model. The observation, a collection of pixels, is a vector
in RN . A typical case is a 128-by-128 array of complex-valued pixels, yielding N = 215. A
joint density on the N pixel values, when conditioned on a hypothesis Hij, is non-Gaussian
and may be multimodal [29]. For example, a simple Gaussian uncertainty on the loca-
tion of a scattering mechanism leads to non-Gaussian image pixel uncertainties. Further,
pixel values exhibit strong correlation due to the coherent combination of scattered energy
from an object’s constituent parts. Multiple reflections or large conducting surfaces can re-
sult in large distances between correlated pixels, and hence seemingly arbitrary correlation
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matrices.

3.1.2 Model-based Classification

To proceed when confronting a large hypothesis space and complex image density func-
tions, we adopt a model-based classification approach. First, a physically based feature set
provides a simple, constructive alternative to joint densities on pixels for expressing uncer-
tainty in the target and the sensor. The extraction of features is performed by statistical
estimation using the physics-based parametric model of sensor data and specification of the
image formation procedure. Second, a coarse-to-fine staged classification strategy is used
to efficiently search the hypothesis space. Third, the sensor data model is combined with
object models to predict features conditioned on a hypothesis. The on-line prediction of
features eliminates the need for a prohibitively large catalog of image templates.

The model-based approach is depicted in Figure 3.1. A state of nature is characterized
by the hypothesis of an object class, Hi, which is further specified by one of finitely many
subclasses, Hij . The SAR measurement resulting from a sensor and an image formation
algorithm provides an image, U . Along the left branch in the figure, a Feature Extraction
stage serves to compress the image and assign uncertainties to features. For SAR imaging, a
sensor data model derived from high-frequency approximation to scattering physics provides
a parametric family of densities for estimating features. Parameters are estimated from
imagery and used as low-dimensional surrogates for sufficient statistics; each feature is a
location together with a vector of attributes. The feature uncertainty is given as a density
function, f(Y |U), and acknowledges the sensitivity of parameter estimates, Y , to noisy
sensor data given the image data, U .

Along the right branch in the figure, complexity of the hypothesis space is addressed in a
coarse-to-fine approach. An Index stage provides a list of candidate subclass hypotheses,
Hij, ij ∈ L, based on a coarse partitioning of the hypothesis space. Evaluation of the can-
didate hypotheses then proceeds using a model for the observations. A Feature Prediction
stage computes a predicted feature set by combining the sensor data model from the Feature
Extraction stage and a computer-aided design (CAD) representation of a hypothesis Hij.
The feature set, X, has an associated uncertainty, acknowledging error in the modeling
and variation among objects in the subclass. The uncertainty is expressed as a density
f(X|Hij). Importantly, the use of physically motivated features facilitates compatibility of
extracted and predicted feature sets.

Finally, the predicted and extracted feature sets are combined in a Match stage to compute
a posterior probability of a candidate hypothesis, Λ(Hij). The top hypotheses, and their
likelihoods, are reported as the output of the classification system. Computation of the
likelihood scores requires a correspondence between the unordered lists of extracted and
predicted features and an integration over feature uncertainty. Further, the likelihood must
incorporate the possibilities of missing or spurious features in the predicted or extracted
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Figure 3.1: A model-based approach to classification
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feature lists. The matching task can be viewed as a probablistic graph match of fully
connected, attributed graphs with deletions and insertions of nodes.

3.1.3 Contributions and Organization

This chapter presents a Bayesian formalism for model-based classification. We demonstrate
that the resulting hypothesis testing algorithm, including the feature correspondence, is
tractable, even for problem sizes encountered in SAR target recognition. In addition, the
chapter adopts a physics-based model for extracting features from SAR images; the features
use the phase in complex-valued SAR images to infer the frequency and aspect dependent
scattering behavior of objects. Recent advances in technology yield sensor bandwidths
exceeding 20% of the center frequency; for such systems, the proposed feature sets provide
much greater information than does processing motivated by a narrow-band point scattering
model.

Detailed construction of the Index and Feature Prediction stages is not considered here;
these stages are discussed in [25, 29]. An adaptive refinement of the candidate hypothesis
list from the Index stage is considered in [28]. Moreover, a Feature Prediction stage that
faithfully simulates frequency and aspect dependent scattering behavior is currently under
development [29].

The chapter is organized as follows. In Section 2 we present a parametric model for radar
sensor data, as required in the Feature Extraction and Feature Prediction stages. Maximum
likelihood estimation of parameters from images computed using sensor data is discussed;
also, parameter uncertainty, the definition of image resolution, and the Fisher information
in image phase are addressed. Section 3 presents a Bayesian computation of a hypothesis
likelihood given sets of extracted and predicted features. In particular, the problem of
determining a feature correspondence is addressed.

In Section 4, synthetic classification results are computed using class means estimated from
a measured set of X-band radar images for 10 objects. The simulation results illustrate
four points: (i) the Bayes approach to model-based classification, including feature corre-
spondence, is tractable; (ii) classification using the Bayes classifier permits estimation of
the optimal error rate, given the assumed priors and feature uncertainties; (iii) classifica-
tion using the Bayes classifier allows designers to explore the performance effects of sensor
parameters, such as bandwidth; and (iv) classification using the Bayes classifier provides a
simulation tool to investigate sensitivity of the estimated error rate to the assumed priors
and feature uncertainties.
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3.2 A Physical Model for Sensor Data and Feature Extraction

In this section we address the problem of feature extraction. We adopt a parametric model
describing the sensor data, develop a feature estimation algorithm, and discuss feature
uncertainty both for extraction and feature prediction. The model we employ is based on
high-frequency approximation of electromagnetic scattering [6, 33] and represents the object
of interest as a set of scattering centers. The scattering centers are described by attributes
that characterize the scattering center geometry and orientation. The attributed scattering
centers are used as features for both the prediction and extraction stages in Figure 3.1. The
scattering model provides a method of constructing and succinctly representing hypotheses
from CAD representations of class objects. Additionally, the model allows feature extraction
to be cast as a parameter estimation problem.

For a Bayesian classifier uncertainty must be characterized for both predicted and extracted
feature sets. Because the proposed features relate directly to physical components in a CAD
representation, uncertainty in predicted features can be estimated from uncertainty in the
CAD model. This is an important advantage of using a physics-based model; other paramet-
ric models could be used to represent the measured data, but unless the model parameters
relate to scattering physics, it is very difficult to model the prediction uncertainty f(X|Hij)
in Figure 3.1. In addition, a parameter estimation formulation of feature extraction provides
means for describing feature uncertainty f(Y |U) and for bounding it with the Cramér-Rao
bound.

The model-based interpretation of images permits an information-theoretic view of SAR
imaging. We consider two implications of this viewpoint. First, we define SAR image res-
olution in terms of uncertainty in estimated parameters. Second, we consider performance
degradation when incomplete data are available. Incomplete data results in higher feature
uncertainty as measured by relative information; as an example, we consider the increase
in uncertainty that results from the common practice of discarding the phase of the SAR
image.

3.2.1 A Parametric Model for Object Scattering

Most feature extraction models used with SAR rely on processing of the magnitude image.
For example, features used in the MSTAR program are peaks (local maxima of the SAR
magnitude image) and ridges obtained from directional derivatives of the SAR magnitude
image [25]. When the complex-valued SAR image is used, the point scattering model is most
commonly employed; in this model the back-scattered amplitude is assumed to be indepen-
dent of frequency and aspect. The point scattering assumption leads to a two-dimensional
harmonic scattering model, and parameter estimation becomes a two-dimensional harmonic
retrieval problem [26, 27]. One drawback of peak and point scattering models is that a sin-
gle scattering object, such as a dihedral, is modeled as several peaks or point scatterers;
in this case, the correlated uncertainty in the estimated parameters is difficult to model.
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Similarly, the relationship of ridge features to scattering geometry is not well understood,
and feature uncertainty is hard to predict.

In this chapter we adopt the physical radar scattering model from Gerry et al. [6], which
assumes a data collection scenario consistent with SAR imaging. A reference point is
defined, and the radar trajectory is required to be co-planar with the reference point.
This plane, the imaging plane, is labeled using an x − y Cartesian coordinate system with
origin at the reference point. The radar position is then described by an angle φ defined
counterclockwise from the x direction. Far zone backscatter is assumed, and therefore
plane-wave incidence is obtained on illuminated objects.

From the geometric theory of diffraction (GTD) [34, 35], if the wavelength of the incident
excitation is small relative to the object extent, then the backscattered field from an object
consists of contributions from electrically isolated scattering centers. The backscattered
field of an individual scattering center is described as a function of frequency ω and aspect
angle φ, and the total scattered field from a target is then modeled as the sum of these
individual scatterers [6].

s(ω, φ; θ) =

N∑

k=1

Ak

(

j
ω

ωc

)αk

sinc
(ω

c
Lk sin(φ − φ̄k)

)

· exp(−ωγk sinφ) exp

(

j
ω

c/2
(xk cos φ + yk sin φ)

)

(3.1)

In (3.1), ωc is the center frequency of the radar bandwidth, and c is the speed of propagation.
Each of N scattering centers is characterized by seven attributes: (xk, yk) denotes the
scattering center location projected to the (x, y)-plane, Ak is a relative amplitude, Lk is the
scattering center length, φ̄k its orientation angle, αk characterizes frequency dependence
of the scattering center, and γk models the mild aspect dependence of scattering center
cross-section (for example, the projected cross-sectional area of a trihedral changes slightly
with aspect angle). The scattering model is described by the parameter set θ = [θ1, . . . , θN ],
where each vector θk = [xk, yk, Ak, αk, Lk, φk, γk] is the collection of the seven parameters,
or attributes, defining each scattering center.

The frequency and aspect dependence of the scattering centers is an important distinction of
this model and permits description of a rich variety of scattering primitives. The frequency
dependence relates directly to the curvature of the scattering object and is parameterized by
αk, which takes on integer or half-integer values. For example, αk = 1 describes flat surface
scattering, αk = 1/2 describes scattering from singly-curved surfaces, and αk = 0 indicates
scattering from doubly-curved surfaces or edges. Values of α less than zero describe diffrac-
tion mechanisms, such as edges and tips. In addition, the sinc aspect dependence in (3.1)
reveals the effective length Lk of the scattering primitive. Many scattering geometries, such
as dihedrals, corner reflectors, and cylinders, are distinguishable by their (α,L) parame-
ters [6], as shown in Figure 3.2. Point scattering is a special case of the model in (3.1) for
αk = Lk = γk = 0.
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Figure 3.2: Canonical scattering geometries that are distinguishable from (α,L) pairs in
the scattering model.
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The model in (3.1) is based on GTD and physical optics approximations for scattering
behavior and, while parsimonious, is able to describe a large class of scatterers. Scatter-
ing objects separated by approximately two or more wavelengths are distinguishable [32].
Physical behaviors not well modeled by (3.1) for small N include creeping waves and cavity
scattering [6].

3.2.2 Parameter Estimation

Next, we describe an approximate maximum likelihood technique for extracting the model
parameters in (3.1) from measured sensor data. The measured data is modeled as

r(ω, φ) = s(ω, φ; θ) + n(ω, φ) (3.2)

where n(ω, φ) is a noise term that represents the modeling error (background clutter, sensor
noise, model mismatch, incomplete motion compensation, antenna calibration errors, etc.)
and can be modeled as a zero-mean, Gaussian noise process with known covariance.

The measured data is often transformed into the image-domain as an array of complex-
valued pixels. The transformation comprises equalization (to compensate for non-ideal
sensor characteristics), windowing, zero padding, and discrete Fourier transformation. The
transformation can be represented by the linear operator L; thus,

r̃(x, y) = L [s(ω, φ; θ) + n(ω, φ)] = s̃(x, y; θ) + ñ(x, y) (3.3)

for a finite array of sample points (x, y). We see that ñ(x, y) is a zero-mean Gaussian noise
process with known covariance. The feature extraction problem is thus one of estimating
the parameter vector θ from the measurement r̃(x, y).

R. A. Fisher’s pioneering work laid a foundation for parametric modeling as a method of
data compression, and established maximum likelihood procedures for estimation of the
unknown parameters [30]. Since r̃(x, y) are Gaussian measurements, the parameter vector
θ which maximizes the likelihood function is found as:

θ̂ML = argmin
θ

J(θ) (3.4)

J(θ) = [r̃ − s̃(θ)]HΣ̃†[r̃ − s̃(θ)] (3.5)

where r̃, ñ and s̃(θ) are vectors obtained by stacking the columns of r̃(x, y), s̃(x, y; θ), and
ñ(x, y), respectively, Σ̃ = cov(ñ), and (·)† denotes Moore-Penrose pseudoinverse. Further-
more, this estimator is robust to model mismatch [37]. Equation (3.4) is a nonlinear least
squares minimization problem.

We make use of the fact that scattering center responses are localized in the image domain
to develop a computationally simpler approximate maximum likelihood estimator for θ [36].
The minimization in (3.4) is decomposed into smaller estimation problems. We partition
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the image into M disjoint regions Ri of high energy and a remainder region R0. Defining
Πi as the projection onto region Ri, we have

J(θ) ≈
M∑

i=0

[r̃ − s̃(θi)]HΠiΣ
†Πi[r̃ − s̃(θi)] + C (3.6)

where θi is a vector containing the parameters for scattering centers in region Ri and C is
a constant independent of θ. Since the number of pixels in Ri is much less than the total
number of image pixels in r̃ and the θi form a partition of θ, the individual minimization
problems in (3.6) are decoupled and have many fewer unknowns than the minimization
problem in (3.5). The weighted least-squares estimator is tractable and provides nearly
efficient parameter estimates for data satisfying the scattering model in (3.1) with colored
Gaussian noise on image pixels [36].

An additional advantage of the approximate ML algorithm is its robustness to the assumed
noise model. The assumption of correlated Gaussian noise across the entire image is not
very accurate for scenes where clutter is present in the form of trees, power lines, etc.
However, this assumption is much better over small image regions that primarily contain
target scattering centers. Image segmentation also facilitates model order selection, which
is implemented using the minimum description length principle.

As an illustration of the approximate ML estimation, Figure 3.3 shows the results of feature
extraction on a measured SAR image from the MSTAR Public Targets dataset [48]. For N =
30, the algorithm models 96.5% of the energy in the image chip shown. In addition, the T-72
tank barrel segment is modeled as a single scattering center whose length is modeled within
10 cm of the actual 1.37 m length. In comparison, peak-based scattering center extraction
methods model this segment as three peaks spaced along the barrel. Execution time for
extraction of 30 scattering features using unoptimized Matlab code on a 450 MHz Pentium
processor is approximately 140 sec using (3.5) and approximately 50 sec if a suboptimal but
computationally efficient estimator is employed.

3.2.3 Parameter Uncertainty

Use of estimated model parameters for Bayesian hypothesis testing requires that an uncer-
tainty be associated with each estimate. The inverse of Fisher information is used to predict
the error covariance of the approximate maximum likelihood estimation algorithm in (3.6).

The Cramér-Rao lower bound is derived in [6] and provides an algorithm-independent lower
bound on the error variance for unbiased estimates of the model parameters. The derivation
assumes the data model in (3.3). For any choice of model parameters, the covariance bound
is computed by inversion of the Fisher information matrix [38]

I(θ) = −E

{
∂2 ln f(s|θ)

∂θ2

}

(3.7)

where f(s|θ) is density on the sensor data s conditioned on the parameter θ.
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Figure 3.3: Measured SAR Image of T-72 Tank (top) and reconstruction from estimated
parameters (bottom). Images are in dB magnitude with a total range of 40 dB.
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3.2.4 Image Resolution

As noted in [39], “a universally acceptable definition of resolution as a performance measure
is elusive.” In synthetic aperture radar, image resolution is typically reported as the width of
a point spread function. This definition is a Rayleigh resolution and is determined by sensor
bandwidth, range of viewing angles and degree of side lobe suppression in image formation.
In contrast, for model-based interpretation of SAR imagery we define resolution in terms
of a bound on the uncertainty in estimated parameters. Prior knowledge of the scattering
behavior, as encoded in (1), results in an uncertainty-based resolution that is often much
finer than the Rayleigh resolution. For example, consider application of feature uncertainty
to the classical notion of separating closely spaced point sources, i.e., α = L = γ = 0
in (3.1). For a given signal-to-noise ratio (SNR) of a single point scatterer (SNR per
mode), let the resolution be defined as the minimum distance between two equal amplitude
scattering centers resulting in nonoverlapping 95% confidence regions for the estimated
locations [6, 40].

Adopting this definition, resolution versus SNR per mode is shown in Figure 3.4 for a SAR
with Rayleigh resolution of 30 cm. The resolution depends on the orientation of the two
point scatterers. The dashed line shows resolution for point scatterers separated an equal
distance in both down range and cross range (i.e., aligned 45◦ to the aperture). The solid
line and the dash–dot line show resolution for two point scatterers aligned parallel and
orthogonal to the aperture, respectively. For an SNR per mode of -5 dB and 500 MHz band-
width, the limit of resolution achievable by model-based scattering analysis is approximately
one-half the Rayleigh resolution; model-based resolution is limited by sensor bandwidth and
SNR, which includes mismatch from the model in (3.3).

In the figure, we report signal-to-noise (SNR) values using the ratio of signal energy to
noise energy computed for the frequency-aspect domain samples. Alternatively, SNR may
be interpreted in the image space as a difference between peak signal level and clutter floor.
However, this image space definition of SNR varies depending on the specific values of the
parameter vector, θ, describing the scattering center.

3.2.5 Magnitude-only Fourier Data

The parameter uncertainty definition of resolution can be directly applied to image recon-
struction from incomplete data; for example, in SAR image formation a common practice
is to discard image phase. In this case, the estimation of s(ω, φ) becomes reconstruction
from magnitude-only Fourier data. The Fisher information, Imag(θ), can be computed for
the sampled magnitude of the image data, using (3.1) and knowledge of both the sensor
transfer function and the image formation operator. The relative information [41] is the
ratio of Fisher matrices, Imag(θ)/I(θ), and quantifies the loss of information incurred by
discarding the image phase. Likewise, the increase in variance in any parameter estimate
can be predicted, for efficient estimators, using the Cramér-Rao bounds.
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Figure 3.4: Resolution versus SNR for three different orientations of two point scatterers;
ωc/(2π) = 10 GHz, and bandwidth is 500 MHz.
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For example, for ωc/(2π) = 10 GHz, 3 GHz bandwidth and 10 dB SNR, the Cramér-Rao
bound on standard deviation in estimation error for α is σ = 1.0 using a magnitude image.
In contrast, estimation of α from the complex-valued image results in σ = 0.02. Thus, use
of complex-valued imagery allows inference of the frequency dependent scattering behavior,
whereas use of magnitude-only imagery does not.

3.3 Hypothesis Testing

3.3.1 Problem Statement

In this section we derive the Bayes match function used for classification from feature
vectors. At the input to the classifier stage, we have a given region of interest (a SAR
image chip), along with a set H = {Hij , ij ∈ L} of K candidate target hypotheses and
their prior probabilities P (Hij). Each hypothesis contains both target class and subclass
information; the set H may contain all possible hypotheses but typically contains a reduced
set as generated from an earlier Index stage as depicted in Figure 3.1. From the image chip
we extract a feature vector Y , and from each candidate hypothesis H ∈ H we generate a
predicted feature vector X, where

X = [X1,X2, . . . ,Xm]T , Y = [Y1, Y2, . . . , Yn]T (3.8)

and where m and n are the number of predicted and extracted features, respectively. Each
feature Xi and Yj is an ordered vector of feature attributes; for example, these attributes
can be (x, y, A, α, L, φ, γ) parameters from the model in (3.1). However, the features
themselves are unordered. In addition, there is uncertainty in both the predicted and
extracted features.

There are two hypothesis testing goals that may be of interest. First, we may wish to
classify the extracted feature vector Y as a measurement of one of the M class hypotheses.
Second, we may wish to classify Y as one of the K class-subclass hypotheses in the set H.
For both cases we adopt a maximum a posteriori probability (MAP) rule; thus, we must
find the posterior likelihoods

Λij = P (Hij|Y ), Hij ∈ H. (3.9)

If our goal is to classify Y as one of the K Index hypotheses (which include both class and
subclass information), we choose the hypothesis that corresponds to the maximum Λij . If
our goal is to classify Y as one of the M class hypotheses, we form

Λ̃i =
∑

j

Λij , 1 ≤ i ≤ M (3.10)

and choose the class i corresponding to the maximum Λ̃i.
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The above formulation gives an interpretation of the Index block in Figure 3.1 as modifying
the prior probabilities on the class and subclass hypotheses. The optimal MAP classifier
maximizes or sums over all possible Hij classes, and not just those provided by the Index
stage. The Index stage computes a statistic Z = g(U) from the image U , and essentially
updates probabilities of hypotheses Hij by finding posterior probabilities P (Hij|Z). A
subset of hypotheses with sufficiently high posterior probabilities are retained for further
processing. The final hypothesis test involves computing P (Hij|U); thus, the feature-based
match processing seeks to extract information in U not contained in Z = g(U) to obtain
a final classification decision. We see that the Index stage does not impact optimality
in (3.9) provided the correct hypothesis is one of the K hypotheses passed. On the other
hand, from (3.10) we see that the optimal MAP rule involves summation over all subclasses
in class i, not just those passed by the Index stage. Thus, (3.10) is optimal only under
the stronger condition that the likelihoods P (Hij |Z) of all subclasses not passed by the
Index stage are equal to zero. In either case, the computational reduction of maximizing or
summing on a reduced set of subclasses often justifies the deviation from optimality of the
resulting classifier.

To compute the posterior likelihood in (3.9), we apply Bayes rule for any H ∈ H1 to obtain

P (H|Y ) = P (H|Y, n) =
f(Y |H,n)P (H|n)

f(Y |n)

=
f(Y |H,n)P (n|H)P (H)

f(Y |n)P (n)
(3.11)

The conditioning on n is used because the number of features in Y is itself a random variable,
but it suffices to consider only vectors Y of length n in the right-hand side of (3.11). Since
the denominator of (3.11) does not depend on hypothesis H, the MAP decision is found
by maximizing f(Y |H,n)P (H)P (n|H) over H ∈ H. The priors P (H) and P (n|H) are
assumed to be known, or are provided by the Index stage.

The determination of f(Y |H,n) includes both prediction and extraction uncertainties, which
are related in the following way. Assume we have an object in the field with feature vector
X̂. We measure that object with a sensor, and obtain a feature vector Y . The measured
feature vector differs from X̂ due to noise, sensor limitations, etc. We write this difference
notionally as Y = X̂ + Ne where Ne is some extracton error described by an uncertainty
pdf f(Y |X̂). In addition, if we suppose a hypothesis H, we can predict a feature vector
X that differs from X̂ because of electromagnetic modeling errors, quantization errors of
the assumed object subclass states (e.g., pose angle quantization errors), and differences
between the actual object in the field and the nominal object that is modeled. We express
this difference as X̂ = X + Np where Np is a prediction error which we describe with an
uncertainty f(X̂|H). Note that X is completely determined from H. To find the conditional

1For notational simplicity, we drop the subscripts on the hypotheses in the sequel, and consider a general
H ∈ H.
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Figure 3.5: An example one-to-one correspondence mapping for m = 4 and n = 5. Extracted
features Y3 and Y5 are false alarms, and predicted feature X3 is missed.

uncertainty of Y given hypothesis H, we have

f(Y |H,n) =

∫

f(Y |X̂,H, n)f(X̂ |H,n) dX̂ (3.12)

where f(X̂|H,n) models the predict uncertainty, and f(Y |X̂,H, n) models extract uncer-
tainty. The computation of f(Y |X̂,H, n) is complicated by the fact that the features in the
Y and X̂ vectors are unordered, so a correspondence between the elements of Y and X̂, or
equivalently between Y and X, is needed.

3.3.2 Feature Correspondence

Computing the likelihood f(Y |X̂,H, n) requires that we form a correspondence map Γ
between extracted and predicted features. The correspondence map is a nuisance parameter
that arises because an extracted feature vector is not ordered with respect to the predicted
feature vector. The correspondence also accounts for extracted features that are not in the
predicted vector (false alarms) as well as predicted features that are not extracted (missed
features).

For general pattern matching applications, a predicted feature Xi may correspond to none,
one, or several extracted features Yj . Further, an extracted feature may correspond to one
or more predicted features, or be a false alarm. We denote by G the set of all such correspon-
dence maps. For specific applications a smaller set GA ⊂ G of admissible correspondence
maps need only be considered. For example, in the SAR classification application presented
in this chapter, GA is the set of all one-to-one maps, where a one-to-one map corresponds
at most one predicted feature with each extracted feature and conversely. An example
one-to-one correspondence map is shown in Figure 3.5. Following [42], we let Γj = i denote
a correspondence between the Xi and Yj. For notational conciseness, we write Γj = 0 to
denote that Yj does not correspond to any Xi, and therefore is a false alarm feature.
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We consider two correspondence mappings, random and deterministic. These two corre-
spondence mappings lead to two different expressions of the posterior likelihoods Λij .

Probabilistic Correspondence
If we assume a probabilistic correspondence model, then we have the Bayes likelihood

f(Y |H,n) =
∑

Γ∈GA

f(Y |Γ,H, n)P (Γ|H,n) (3.13)

where, similarly to (3.12),

f(Y |Γ,H, n) =

∫

f(Y |X̂,Γ,H, n)f(X̂ |Γ,H, n) dX̂ (3.14)

The conditioning on n, the number of extracted features, is needed above because Γ is a
correspondence between m predicted features and n extracted features; without the condi-
tioning on n, P (Γ|H,n) cannot be computed independently of Y .

The main difficulties in implementing (3.13) are: i) knowledge of the priors P (Γ|H,n)
and ii) the high computational cost of summing over all possible correspondences. The
correspondence prior probabilities can in principle be determined from knowledge of the
predict and extract uncertainties for each hypothesis, but the derivation is quite difficult
for many applications. More importantly, the summation contains a (very) large number of
components; for example, there are more than min(m!, n!) possible one-to-one maps from
a set of m predicted to n extracted features.

One can simplify computation of the large sum in (3.13) with assumptions of equal priors
on Γ and independence of features [42, 43]. If the priors are not equal or the features are
not independent, then the resulting classifier will be suboptimal. It is difficult to predict
the performance loss due to mismatch between the assumed and actual priors.

Deterministic Unknown Correspondence
If we assume the correspondence is deterministic but unknown, then it becomes a nuisance
parameter in the classification. In this case no uniformly most powerful test exists. We thus
resort to the Generalized Likelihood Ratio Test (GLRT) classifier, in which we estimate Γ,
then use the estimated Γ to estimate the likelihoods f(Y |X̂,H, n):

f(Y |H,n) ≈ max
Γ∈GA

f(Y |Γ,H, n) (3.15)

where f(Y |Γ,H, n) is computed using (3.14). The GLRT approach in (3.15) avoids the
summation in (3.13), but requires a search for the best correspondence. Graph matching
algorithms [44] can be used to simplify this search.

Discussion
The GLRT estimate of the conditional likelihood is a good estimate of the Bayes likelihood
if the “best” correspondence term (3.15) dominates the sum in (3.13). This happens in
the SAR classification problem, for example, when the feature uncertainties are small com-
pared to their feature distances; for example, the match likelihood when corresponding two
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features with widely differing (x, y) locations is negligibly small compared to the likelihood
found from associating all pairs of features with similar (x, y) locations. The presence of
additional scattering attributes helps increase the feature distances even for scattering fea-
tures that have similar locations; for example, two physically close scattering centers with
different α and L parameters have lower likelihood of an incorrect match pairing than they
would if match scores are based only on scatterer location and amplitude.

For the SAR classification application, we adopt both a one-to-one map and a GLRT classi-
fier. The one-to-one map makes physical sense: an extracted scattering center corresponds
to at most one predicted scattering center, and conversely. The GLRT classifier assumes a
deterministic but unknown correspondence map, and avoids summation over a large set of
possible correspondence maps. The probabilistic map assumption for this model is consid-
ered in [43]. In addition, [42] considers other classifiers derived for SAR features using only
location attributes.

3.3.3 Conditional Feature Likelihood

To implement either equation (3.13) or (3.15), one must have available a model for f(Y |X̂,Γ,H, n).
In this section we develop a model based on [42] that applies to SAR scattering center fea-
tures.

We assume the Xi are conditionally independent given H, and that Yj are conditionally
independent given H, X, and n. The independence of the Xi is reasonable because the
prediction errors of separate scattering centers are due to variations in components on the
target that make up that scattering center, and these variations can be assumed to be
unconnected. The independence of the Yi is supported by the near block diagonality of
the CRB matrix for well-separated scattering centers [6]. In addition, the independence
assumptions simplify the Bayes matcher significantly. Thus, we have

f(Y |Γ,H, n) =

n∏

j=1

f(Yj|Γ,H, n) (3.16)

For a one-to-one correspondence, the jth extracted feature corresponds either to a particular
predicted feature (say the ith one), or to a false alarm. We denote these two cases as Γj = i
or Γj = 0, respectively. Thus, for a given correspondence, there may be some predict-
extract feature correspondences, some missed predicted features (which correspond to no
extracted feature), and some false alarm extracted features which have no corresponding
predict feature; see Figure 3.5. For a given correspondence, let nF denote the number of
false alarm features.
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We model the conditional feature likelihood as:

f(Y |Γ,H, n) = P (nF false alarms)
∏

{j:Γj=0}

fFA(Yj)

·
∏

{j:Γj=i>0}

Pi(H)f(Yj|Γj = i,H, n)

·
∏

{i:Γj 6=i,∀j}

(1 − Pi(H)) (3.17)

where Pi(H) is the detection probability of the ith predicted feature under hypothesis H.
The first term on the right hand side models the likelihood of false alarm features, and
fFA(Yj) is the pdf of feature Yj if it corresponds to a false alarm. The second line is the
likelihood of extracted features that correspond to predicted features, and the third line
represents the miss probabilities for predicted features that have no corresponding extract
feature.

3.3.4 Implementation of the Correspondence Search

The GLRT hypothesis selection rule in equation (3.15) involves finding the correspondence
Γ that maximizes f(Y |Γ,H, n) in (3.17) for each candidate hypothesis H ∈ H. In general,
the search is computationally intensive, but for some cases can be implemented efficiently.
Specifically, in the case that

P (nF false alarms) = cβnF (3.18)

for some constants c and β, the search can be efficiently implemented in O((m + n)3)
operations using the Hungarian algorithm [44].

We briefly summarize the implementation of the Hungarian algorithm for this problem2.
From equations (3.17) and (3.18) we have

− log f(Y |X,Γ,H, n) = − log c −
∑

{j:Γj=0}

log[βfFA(Yj)]

−
∑

{j:Γj=i>0}

log[Pi(H)f(Yj |Γj = i,H, n)]

−
∑

{i:Γj 6=i,∀j}

log[1 − Pi(H)] (3.19)

We insert the elements of the above equation for all possible i and j into an (m+n)×(m+n)
array, as shown in Figure 3.6. Then the minimum of equation (3.19) over all one-to-one
maps reduces to the problem of selecting exactly one element from each row and column

2We thank William Irving for noting the application of the Hungarian algorithm to this search problem.
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of the array such that the sum of the selected entries is minimized. The resulting solution
also gives the optimal correspondence. Specifically, if cij is selected, then predicted feature
Xi corresponds to extracted feature Yj; if Fj is selected, then Yj is a false alarm feature; if
Mi is selected, then Xi is not present (missed) in the extracted features Y .

Y1 · · · Yn misses

X1 c11 · · · c1n M1 ∞
...

...
. . .

...
. . .

Xm cm1 · · · cmn ∞ Mm

false F1 ∞ 0 · · · 0

alarms
. . .

...
. . .

...
∞ Fn 0 · · · 0

Figure 3.6: The cost matrix for the one-to-one matcher in equation (3.17). Here, cij =
− log[Pi(H)f(Yj |Γj = i,H)], Fj = − log[βfFA(Yj)], and Mk = − log[1 − Pk(H)].

The search is equivalent to finding a permutation of the cost matrix that minimizes its
trace. Such a permutation is found efficiently using the Hungarian algorithm [44]. A related
algorithm [45] can also find the k permutations that give the k smallest trace values, which
is useful if the “best” k correspondences are of interest.

As an alternative, geometric hashing [46, 47] can be used to efficiently search a set of candi-
date hypotheses for the highest likelihood match. Hashing methods precompute information
about patterns of features in a hash table that later can be efficiently searched to vote for
hypotheses that are close matches. On the other hand, hashing requires the formation of a
large table, containing entries for every hypothesis Hij; this table can be prohibitively large
for high-dimensional classification applications.

3.4 Bayes Classification Example

In this section we present an example of feature-based classification using SAR scattering
center attributes. We use synthetic feature vector means based on measured SAR imagery
and an assumed feature perturbation model. We select target classes, feature sets, feature
attribute uncertainties, and priors to be representative of a realistic X-band SAR target
recognition problem. The synthetic data results serve to emphasize, by example, that
the Bayes classifier is tractable for problem sizes encountered in SAR target recognition
given the assumption of conditionally independent features in Section III.C. The proposed
technique permits estimation of the optimal error rate given a set of assumed priors and
feature uncertainties. In addition, we demonstrate by example that the Bayes classifier
can be used to explore the performance effects of sensor parameters. Finally, the Bayes
classifier can be used as a simulation tool to investigate sensitivity of the estimated error
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rate to errors in assumed priors and feature attribute uncertainty. Accurate prediction of
absolute classification performance would require an electromagnetic prediction module as
in Figure 3.1 and extraction uncertainties empirically verified from ground truth; neither is
presently available.

We generate class means using a combination of synthetic generation and feature extrac-
tion from SAR imagery. We synthesize 2747 class mean features for 10 composite target
classes in the MSTAR Public Targets dataset [48]. The data set contains X-band image
chips with 128x128 pixels and 1ft×1ft resolution SAR data chips of 10 targets at 17 degree
depression angle. For each target, approximately 270 images are available covering the full
360 degree aspect angles, for a total of 2747 images. Downrange and crossrange locations
and amplitudes of scattering centers are synthesized from local maxima on the image chips.
The targets are the 2S1, BMP-2, BRDM-2, BTR-70, BTR-60, D-7, T-62, T-72, ZIL-131,
and ZSU-23-4. Examples of the SAR image chips are shown in Figure 3.7. From each image
we extract locations and amplitudes of scattering centers from local maxima in the SAR
image. The α and L parameters are not provided by current prediction modules, so are gen-
erated synthetically. The α attribute for each feature is generated as α ∼ N (0.5, 0.25). The
Gaussian approximation to a discrete variable is used to avoid the combinatorial number of
likelihood evaluations for all possible α choices from prediction and extraction; experiments
verify that the Gaussian approximation gives very similar results at lower computational
cost [43]. The length parameter is quantized to one bit (L = 0 or L > 0), and the nom-
inal values of the length attribute are generated using a Bernoulli random variable with
P (L > 0) = 0.3. We quantize L because existing electromagnetic prediction codes do not
provide L; further, prediction uncertainty is unknown, so we choose to adopt only coarse
uncertainty assumptions in the simulation. The γ and φ parameters in (3.1) are not used in
the experiments because no strong evidence exists that these parameters can be predicted
and extracted at 1 ft SAR resolution with sufficiently low uncertainty to substantially im-
prove classification performance; nonetheless, these two parameters are retained in (3.1)
both for reduced bias and for application to higher resolution SAR imagery. For example,
using 2 in resolution SAR imagery at X-band, pose angle can be estimated to an accuracy
that is a small fraction of the 20◦ phase history angle used in the image formation.

Prediction and extraction feature uncertainties are needed in the Bayes classifier. We eval-
uate f(Yj|Γj = i,H, n) in (3.17) as follows. Recall each Yj is a feature vector [Yj1, . . . , YjS],
where the Yjk are the individual feature attributes xj , yj, Aj , αj, Lj, φj , and γj from the
model in (3.1) (or a subset of these). For simplicity we assume the uncertainties of the fea-
ture attributes are independent; experiments using dependent attribute uncertainties are
presented in [43]. For independent attributes,

f(Yj|Γj = i,H, n) =
∏

k

f(Yjk|Γj = i,H, n) (3.20)

where k denotes an index on the feature attributes. We further model each attribute k in an
extracted feature Yj that corresponds to predicted feature Xi with a conditional likelihood
f(Yjk|X̂ik,H, n) as follows. If k corresponds to x, y, log |A|, or α, the conditional likelihood
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Figure 3.7: Examples of the MSTAR SAR image chips used in the Bayes classificaion
example. Four T-72 (left) and BMP-2 (right) images are shown.

is assumed to be Gaussian

f(Yjk|X̂ik,H, n) ∼ N (X̂ik, σ2
e,k) (3.21)

We assume a similar predict uncertainty for each attribute:

f(X̂ik|Xik,H, n) ∼ N (Xik, σ
2
p,k) (3.22)

Thus, from (3.14), (3.21), and (3.22) we have

f(Yjk|Xik,H, n) ∼ N (Xik, σ
2
p,k + σ2

e,k) (3.23)

which gives the needed terms in (3.20). Similarly, for a discrete attribute (the quantized
length L) the likelihood is a weighted sum

P (Yjk|Xik,H, n) =
∑

X̂ik
P (Yjk|X̂ik,H, n)P (X̂ik|Xik,H, n) (3.24)
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Table 3.1: Sum of prediction and extraction feature attribute uncertainties used in the
Bayes classifier example.

Feature Attribute SAR Rayleigh Resolution
2 ft 1 ft 1/2 ft 1/4 ft

locations x, y
N (0, σ2) σ = 2 ft σ = 1 ft σ2 = 1/2 ft σ = 1/4 ft
amplitude
log

10
(|A|) ∼ N (0, σ2) σ2 = 0.5 σ2 = 0.5 σ2 = 0.5 σ2 = 0.5

frequency dependence
α ∼ N (0, σ2

α
) σα = 1 σα = 1/2 σα = 1/4 σα = 1/8

length
[

P (L = 0|L = 0) P (L = 0|L > 0)
P (L > 0|L = 0) P (L > 0|L > 0)

] [
0.7 0.3
0.3 0.7

] [
0.8 0.2
0.2 0.8

] [
0.9 0.1
0.1 0.9

] [
0.95 0.05
0.05 0.95

]

Table 3.2: False alarm pdf fFA(Yj) used in the Bayes classifier example.

Feature Attribute Feature pdf used

number Poisson with rate λ = 3 per image chip
P (nF false alarms ) = e−λλnF /(nF !)

locations x, y uniformly distributed over the image

amplitude log10(|A|) ∼ N (µ, 0.25)
µ = log10(median amplitude of predicted scattering centers)

curvature α ∼ N (0.5, 1)

length L is Bernoulli with P (L > 0) = 0.3

and is thus described by probability mass functions on the predicted features along with
predict and extract confusion matrices.

From equations (3.23) and (3.24) we see that only the sum of prediction and extraction
uncertainties is needed. Table 3.1 lists the uncertainty values used in the simulations. We
assume no prediction uncertainty in α or L, and log normal uncertainty in |A|. The total
location uncertainty is assumed to have a standard deviation of one Rayleigh resolution for
both x and y. In addition, Table 3.2 specifies the false alarm pdf fFA(Yj).

We emulate the Index stage as follows. For each of the 2747 target image chips, we find
the 5 image chips in each of the 10 target classes that have the highest correlation. The
target classes and poses (pose is in this case azimuth angle) corresponding to these 50
image chips form the initial hypothesis list generated by the Index stage. For each class
mean vector, we generate a predict feature vector for each of the 50 hypotheses from the
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Index stage by randomly perturbing the mean vector using the predict uncertainty model
above. We similarly generate an extracted feature vector from the mean vector. The
extracted feature vector assumes each scattering center has a probability of detection of
Pd = 0.5, so not all scattering centers are present in the extracted feature vector. We also
add clutter scattering centers to the extract feature vector. We then compute the GLRT
hypothesis test using equations (3.11), (3.15), and (3.17), assuming equally likely priors
(P (H)P (H|n) = constant) on the 50 Index hypotheses. We use the Hungarian algorithm
to search for the best correspondence map, using β = λ in (3.18). We record the target
class corresponding to the one of the 50 hypotheses with the highest likelihood score. We
repeat this experiment 10 times for each class mean vector; this gives a total of 27,470
classifications from 27,470×50 matches. For each candidate hypothesis, computation of the
correspondence is O(m3), where m is the number of predicted features. Execution times
for the 50 likelihood computations average 4.6 sec using unoptimized Matlab code on a
333 MHz Pentium processor.

Table 3.3 presents the results of the above experiment for a SAR Rayleigh resolution of
1 ft, using the uncertainty values in Table 3.1. We summarize the overall performance as
an average probability of correct classification Pc, which is 86.8% for this case.

Table 3.3: One-to-one classification results using five feature attributes. The ijth entry
gives the number of times the object was classified as object j given that object i is the
true object. Overall Pc = 86.8%.

Optimal One-to-One Map, five feature attributes, Pd = 0.5

2S1 BMP BRDM BTR BTR D-7 T-62 T-72 ZIL ZSU Total
2 2 70 60 131 23-4

2S1 2574 42 33 48 43 38 72 52 56 32 2990
BMP-2 42 2023 55 37 29 29 30 31 29 25 2330
BRDM-2 60 41 2554 71 39 39 50 40 29 57 2980
BTR-70 29 32 46 2046 33 20 34 34 37 19 2330
BTR-60 45 28 38 36 2280 23 26 27 32 25 2560
D-7 49 35 39 13 25 2639 68 37 36 49 2990
T-62 51 44 58 31 36 37 2584 53 46 50 2990
T-72 36 43 38 36 32 20 44 1981 47 43 2320
ZIL-131 55 53 34 45 44 30 44 38 2614 33 2990
ZSU-23-4 37 61 52 39 33 63 60 57 45 2543 2990

Figure 3.8 presents probability of correct classification results as a function of both the
number of feature attributes and the system bandwidth. First we compare the use of loca-
tion features with location features coupled with other attributes. The amplitude attribute
provides only modest improvement (1-2 dB) in the probability of error, due to its relatively
high uncertainty. The addition of the frequency dependence and length attributes provides
more significant improvement in classification performance, especially for the higher resolu-
tions considered. The amount of improvement depends critically on the assumed attribute
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uncertainty and its correlation with other attributes.

Figure 3.8 also presents results of an experiment in which we predict classification perfor-
mance as a radar system parameter, namely Rayleigh resolution, changes. The bandwidths
and integration angles correspond approximately to SAR image Rayleigh resolutions of 2,
1, 1

2 , and 1
4 ft. We assume decreasing uncertainty in the location, frequency dependence,

and length attributes as Rayleigh resolution becomes finer, as shown in Table 3.1. From
Figure 3.8 we see that classification performance improves significantly as radar bandwidth
and integration angle increase. Specifically, the error probability 1−Pc decreases by about
15 dB as the SAR Rayleigh resolution improves from 2 ft to 1

4 ft. Here we see a clear benefit
of increased bandwidth because it results in decreased feature uncertainty.

Figure 3.9 shows the effect on classification performance when the assumed uncertainty
model in the Bayes classifier is in error. In this experiment we set the location uncer-
tainty standard deviation to 0.5, 1, and 2 times the correct location uncertainty; the other
attributes use the correct uncertainty models. Here, Pi(H) = 0.9. We see the correct classi-
fication rate drops by 10%-20% as a result of the mismatch, and that a greater performance
loss occurs when the model-based classifier assumes too low an uncertatinty.
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Figure 3.8: Classification performance as a function of number of feature attributes and
radar bandwidth. The top figure shows average probability of correct classification (Pc);
the bottom figure shows the same data plotted as average probability of error (1 − Pc) in
dB.
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tainties in the Bayes classifier. The left(right) bars assume 0.5(2) times the true location
uncertainty. The top figure shows average probability of correct classification (Pc); the
bottom figure shows the same data plotted as average probability of error (1 − Pc) in dB.
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3.5 Conclusions

We have presented a model-based framework for image processing when the processing goal
is object classification. The Bayesian formalism allows clear and explicit disclosure of all
assumptions, in contrast to ad hoc classification procedures. Moreover, we demonstrated
that the Bayes approach, including the associated correspondence problem, is tractable and
leads to implementable algorithms.

We have presented the Bayes approach to model-based classification in the application
context of synthetic aperture radar imagery. By modeling electromagnetic scattering be-
havior and estimating physically meaningful parameters from complex-valued imagery, we
computed features as statistics for use in hypothesis testing. For radar systems with a
significant fractional bandwidth, the features provide richer information than local peaks
in magnitude imagery.

A complete empirical evaluation the proposed classifier requires an electromagnetic scat-
tering code to provide predicted features conditioned on a target hypothesis; at the time
of this publication, such a code is being developed by Veridian-ERIM International, Inc.,
as a hybrid combination of the ray tracing and scattering primitive codes. Further, the
efficacy of the proposed likelihood estimation technique requires additional empirical verifi-
cation of the feature uncertainties adopted in Section 4; to do so requires ground truth that
is not currently available, but would be provided by the scattering prediction code under
development.

The implementable Bayes classifier allows estimation of optimal error rates, given assumed
priors and feature uncertainties, and the simulation of performance sensitivity to assumed
priors, to assumed feature uncertainties, and to sensor characteristics.
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4. IFSAR PROCESSING FOR 3D TARGET

RECONSTRUCTION

4.1 Introduction

In this chapter we investigate the use of interferometric synthetic aperture radar (IFSAR)
processing for the 3D reconstruction of radar targets. In particular, we are interested
in using two or more phase-coherent, high resolution SAR images taken at slightly offset
elevation angles. The idea is to use phase difference from corresponding pixels in the image
to estimate the height of scattering responses, where height is measured in the direction
normal to the slant plane on which the images are formed.

Traditional IFSAR processing assumes that a given image pixel is dominated by scattering
from a single height.[49] This height is then estimated from the phase difference between
corresponding pixels in two images. In practice, the height estimate is corrupted by noise
or clutter in the image; in some applications, height estimates can be locally averaged to
reduce effects of the noise.[49]

The IFSAR application we consider is reconstruction of targets. For this application, it is
expected that a major source of error may arise from scattering at more than one height
in a given image resolution cell. This scattering can arise from layover (e.g. from tree
canopies or other parts of the target) and also from multiple-bounce scattering mechanisms
or sidelobes from strong scattering components in other resolution cells that leak into the
image pixels under study. In this chapter we analyze the effects of the presence of more
than one scattering response on the resulting height estimate.

The approach we take is summarized as follows. We assume a model in which the IFSAR
image pixels under study are the result of two scattering responses. Without loss of general-
ity, we assume that there is a dominant scattering term at one height and a second, weaker
term at a different height. We analyze the effect of this second term on IFSAR height
estimates, as a function of scattering magnitude, its phase difference from the dominant
scatterer, and its height difference from the dominant scatterer.

Second, we consider ways of detecting IFSAR pixels that are the result of more than one
scattering center. We specifically consider the magnitude difference between IFSAR image
pixels. We develop a statistical model for the joint probability of height errors and pixel
magnitude errors, and develop a hypothesis test for detecting cells with more than one
scattering center. We derive the RMS height error and the detection/false alarm proba-
bilities for this hypothesis test. The analysis is aided by a geometric model that describes
the tests, from which a qualitative detection and false alarm understanding can be derived.
The test is applied to 3D object reconstruction from Xpatch SAR imagery of a backhoe
ground target.
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The notion of multiple scattering centers in a resolution cell fits into the framework of the
general radar concept of unresolved targets, where each scattering center is a point-target.
The problem is to estimate the location of the unresolved targets or to eliminate them from
a radar image, if they detract from the image quality. This problem has been investigated in
monopulse radar literature; a deterministic[50] solution and probabilistic[51, 52] estimates
of the location of two unresolved targets using monopulse radar system measurements have
been developed. Here we model the problem of multiple unresolved scatterers from a SAR
standpoint and investigate ways of improving 3D IFSAR images based on analysis of the
model.

We also use the scattering model and geometric interpretation to predict performance when
three or more coherent IFSAR images are available. We consider hypothesis tests for detect-
ing multiple scattering centers, which are based on phase linearity of pixels under consid-
eration. The analysis suggests that rejection of multiple-scattering cells is not significantly
better using three or more IFSAR images than using only two images.

4.2 Multiple Scatterer Model

In this section we develop a model for two or more IFSAR images. We consider the case in
which an image pixel is the result of a single dominant scattering center in a corresponding
resolution cell. We also consider a model for the case when multiple scattering terms are
present. The two-scattering model will be developed, although an extension to three or
more scattering terms follows similarly.

4.2.1 Coherent IFSAR Images

We assume that a set of F complex images of a scene is available. Each image is formed
from a SAR aperture at center elevation Ψi (i = 1, . . . , F ), and the images are formed
on a common slant plane whose elevation is Ψs. We denote these images as si(x, y) for
i = 1, . . . , F , where the x-axis and y-axis are oriented in the crossrange and downrange
directions on the slant plane, respectively. For simplicity of exposition, we further assume
that the data collection apertures are equally-spaced in elevation,

Ψi = Ψ1 + (i − 1)∆Ψ, i = 1, . . . , F and ∆Ψ ≪ 1 (4.1)

where ∆Ψ is a constant such that |ΨF − Ψ1| ≪ 1, and also that |Ψi − Ψs| ≪ 1, so that
sin(Ψi − Ψs) ≈ Ψi − Ψs and cos(Ψi − Ψs) ≈ 1.

In traditional IFSAR processing it is assumed that at each (x, y) location in the slant plane,
backscatter occurs at a (single) height h(x, y) normal to the slant plane. In this case, for
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Ψi satisfying (4.1), the image pixel response si(x, y) at image location (x, y) is given by[49]

si(x, y) ≈ sinc∆X,∆Y (x, y) ⊗
[

r(x, y)e−j4π sin(Ψi−Ψs)h(x,y)/λe−j4π cos(Ψi−Ψs)y/λ
]

(4.2)

sinc∆X,∆Y (x, y) = ∆X∆Y sinc
(

x∆X
2π

)
sinc

(
y∆Y
2π

)

where λ is the (center frequency) wavelength of the radar and ∆X and ∆Y are the width
of the support of the data collection in the crossrange and downrange Fourier dimensions
X and Y . Here, r(x, y) is the reflectivity function of the scene, and h(x, y) is the height of
the image above the slant plane. In a SAR system, the image in (4.2) is sampled, and the
sample si(xk, yl) is denoted as the image pixel at (xk, yl).

Traditional IFSAR processing forms an estimate of the height h(x, y) under the assumption
that there is one scattering point per resolution cell. The z-coordinate of the image pixel
can be calculated using the phase difference between two images at closely spaced elevation
angles. The relation between image height and phase, for Ψi satisfying (4.1), is given by[49]

γi = arg(si+1s
∗
i ) ≈ kIh(x, y). (4.3)

where

kI =
4π∆Ψ

λ
(4.4)

is a proportionality constant that scales height to phase shift, and si is used to denote the
image pixel value under consideration, si(xk, yl), for simplicity of notation. From equation
(4.3), the scattering height is estimated by

ẑi =
1

kI
arg(si+1s

∗
i ). (4.5)

From equation (4.5) we see that IFSAR mapping from phase difference to height is am-
biguous if the true phase difference exceeds 2π. Hence, we define the unambiguous IFSAR
height interval width as 2π/kI .

The resolution cell corresponding to an image pixel centered at some point (xk, yl) is given
by

Ck,l = {(x, y, z) : xk −
xres

2
≤ x ≤ xk +

xres

2
, yl −

yres

2
≤ y ≤ yl +

yres

2
,
−zmax

2
≤ z ≤ zmax

2
},

(4.6)
where xres and yres are the resolutions in the x and y coordinates, respectively, and zmax is
the maximum height range of the scene, which is often defined from the beamwidth of the
radar. If more than one scatter lies within cell Ck,l, equation (4.3) no longer applies. The
image pixel corresponding to (xk, yl) is the combined response of the scatterers within that
cell, and application of equation (4.3) may result in height estimation errors. We quantify
these height errors in Section 4.3.

If the height of scattering varies slowly with respect to the SAR image resolution (such as
in terrain-mapping applications), the single-pixel height estimate (4.5) can be modified to
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provide some averaging over multiple pixels [49]. However, in applications such as 3D target
reconstruction, the scattering height varies rapidly with respect to image resolution, and
height estimates are formed from single pixels to avoid bias due to smoothing. While much
of the analysis that we present applies to the multiple-pixel case, we assume independent
processing of individual pixels in the following.

In the ideal case of no noise and a single scattering response per pixel, ẑi = zi. In practice,
this height estimate will be corrupted by additional scattering terms and by noise. The effect
of noise has been well-studied in the literature.[49] If each si measurement is corrupted by
additive (complex) Gaussian noise with zero mean and variance σ2

n, then for moderate to
high SNR the height error is approximately Gaussian with zero mean and standard deviation
given by

stdev(ẑi) =
1

kI

σn

|si|
. (4.7)

The value of σn can be computed from knowledge of the SAR measurement system.[49]
Another source of height error results when an image pixel is the superposition of more
than one scattering response. These additional scattering responses could be effects of
layover or multiple-bounce scattering whose responses project to the same image pixel. In
the following sections, we will analyze the estimation error in the height estimate ẑi of the
“desired” scattering center, that results from a nonzero extraneous scattering term. This
error can be compared with the noise-induced error in equation (4.7) to determine when
errors due to extraneous scattering are significant compared to errors due to noise.

4.2.2 Model Description

In the discussion that follows, a two-scatterer model is established. This model can be
generalized to more than two scatterers, but the generalization is not needed here.

We assume that a set of F complex images of a scene are available. Consider an arbitrary
image resolution cell, or pixel, centered at coordinates (xk, yl) in the image plane and let
si, i = 1, . . . , F denote the complex-valued pixel from the ith image. We assume that
the scattering response that produces these values is comprised of two point scattering
centers. The complex responses from the two scattering centers at elevation Ψ1 are given
by A1e

jα1 and A2e
jα2 , respectively. Without loss of generality the first scattering center will

be considered the dominant one, A1 ≥ A2. We assume that the amplitude responses of the
scattering centers are constant with respect to small elevation changes; however, the phase
response is a function of elevation. These assumptions follow from the arguments presented
during the the development of equation (4.3) for one scatterer[49]. The two scatterer model
is the superposition of each scatterer in the resolution cell. Thus, we have

si = A1e
jα1ej(i−1)kIz1 + A2e

jα2ej(i−1)kIz2 , i = 1, . . . , F (4.8)

△
= si,1 + si,2
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where z1, z2 are the heights of the scattering centers (in meters) from the slant plane, and
kI is given by (4.4); si,n denotes the image pixel formed by the nth scatter at elevation Ψi.
A diagram of this model is shown in Figure 4.1(a).

4.2.3 Error Model

The height estimation due to multiple scattering terms is a function of six parameters,
namely the scatterer amplitudes A1 and A2, their response phases α1 and α2, and their
heights z1 and z2. In this section, we develop an error model that reduces these six para-
meters to three parameters of interest, and we develop an intuitive geometric model that
captures the essential characteristics of extraneous scattering on height estimation.

A vector diagram for si and si+1 is shown in Figure 4.1(a). Using equation (4.5), the height
estimate is given by the angle from si to si+1, φi, divided by a constant kI .

To analyze the error resulting from two (or more) measurements containing two scattering
terms, we consider the following error vector model. We define

s̃i =
si

si,1
= 1 +

A2

A1
ej(α2−α1)ej(i−1)kI (z2−z1) i = 1, . . . , F (4.9)

△
= 1 + fejαejβ(i−1) (4.10)

The error model reduces the original six-parameter problem to one of three parameters.
These three parameters of the error model have intuitive meanings. The parameter f =
A2/A1 (0 ≤ f ≤ 1), represents the fractional magnitude of the second scatterer with respect
to the first. The parameter α is the difference in scattering response phases. The parameter
β is an angle such that β/kI is the height difference between the two scatterers. A vector
diagram depicting these error terms is shown in Figure 4.1(b).
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Figure 4.1: Vector diagrams for two point scattering model: (a) Unnormalized model (b)
Normalized error model.
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The angles between the si vectors encode a height estimate through the scaling factor kI ;
similarly, we define error angles as

γ̃i = arg(s̃i+1s̃
∗
i ) (4.11)

These angles encode the height errors given by

z̃i = ẑi − zi,1 =
1

kI

[
arg(si+1s

∗
i ) − arg(si+1,1s

∗
i,1)
]

=
1

kI
[arg(s̃i+1s̃

∗
i )] =

1

kI
γ̃i (4.12)

derived from (4.5) and (4.9), using pixels in images at elevations Ψi and Ψi+1. ẑi is the
estimated height of the image resulting from two scattering centers, and zi,1 is the height of
the dominant scattering center; so, height error is the height that the estimate differs from
the height of the dominant scatterer.

The error vector model in equation (4.10), and the corresponding angle errors in (4.11),
provide a compact and geometric representation of the sources of height errors caused by a
second scattering center. The parameters of s̃i determine the height error, as we discuss in
Section 4.3 for IFSAR height estimation when F = 2 images are available. In Section 4.4 we
address height estimation methods when F ≥ 3 coherent images are available, and discuss
error mechanisms there.

4.3 IFSAR Height Analysis Using Two SAR Images

Multiple scatterers in a resolution cell introduce height error into standard IFSAR process-
ing. In this section we analyze errors obtained from height estimates found from two coher-
ent SAR images (i.e. F = 2 in (4.8)). We consider height estimation error resulting from
the estimator in equation (4.5), and the utility of using scattering magnitudes to detect
height errors; we hypothesis a detection statistic and analyze its performance. Our analysis
assumes noiseless measurements of one or two scattering centers.

Standard IFSAR processing estimates the height from the angle difference between the two
complex pixel values from two SAR images that are closely-spaced in elevation. The height
error due to the presence of a second scattering term in the measurements is given by (4.12).
Thus, γ̃ characterizes height estimation error to within a constant kI . We will analyze γ̃ in
the following discussion. We note a related application in which a similar scattering model
arises is that of monopulse radar[50]. However, the statistical performance analysis and the
generalization to three or more measurements presented in this chapter appear to be novel,
and in fact apply to the monopulse radar application as well.

Note that when A2 = 0, |s1| = |s2|, but when A2 > 0, |s1| and |s2| are in general not equal.
This suggests a means of detecting the presence of a second scattering term. To this end,
consider the normalized magnitude error

m̃ =
|s1| − |s2|
|s1| + |s2|

=
|s̃1| − |s̃2|
|s̃1| + |s̃2|

. (4.13)
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Figure 4.2: Vector diagram of four pairs of scattering vectors, corresponding to four values of
α, and illustrating how error magnitude difference m̃ and error angle γ̃ are complementary.
Extremal values of γ̃ are attained when m̃ = 0 (left and right pairs), and when γ̃ = 0 (top
and bottom pairs) the normalized magnitude error is near its extremal values.

The geometry in Figure 4.1(b) provides an intuitive understanding of both the angle and
magnitude error. The error depends on f , α, and β. When either f = 0 (i.e. A2 = 0)
or β = 0 (i.e. z1 = z2), there is no angle or magnitude error, regardless of α. Otherwise,
both the error angle and magnitude depend on α. Figure 4.2 shows four pairs of (s̃1, s̃2)
that result in zero height or zero magnitude error, for fixed f , and β; note that they are
complimentary in the sense that γ̃ achieves a local extremum when m̃ = 0; similarly, when
γ̃ = 0, m̃ is close to its maximum or minimum value.

Figure 4.3 shows the relationship between error angle, γ̃, and normalized magnitude error,
m̃, for selected values of f and β, over all values of α ∈ [0, 2π]. The minima and maxima
relationship between m̃ and γ̃ discussed above can be seen in this figure. In addition, for
fixed f (β), smaller values of |β| (f) result in smaller values for |γ̃| and |m̃|; this can be
seen from Figure 4.1(b). The complimentary nature of the extrema and zeros of γ̃ and m̃
are also evident.

4.3.1 Probabilistic Model for IFSAR Height Error

The previous subsections characterize IFSAR height error for particular parameters f , α,
and β. In order to better characterize overall height error performance, we propose a proba-
bilistic model, in which we assume prior probabilities on these parameters and characterize
the resulting probability density function (pdf) of the height error.

Prior probabilities of the error parameters will depend on the application of interest, and
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Figure 4.3: Plots of error angle γ̃ and normalized magnitude error m̃ for (a) β = −0.2π and
(b) β = −0.8π. Each figure shows results for values of f ∈ [0, 0.95] at 0.05 increments and
for all α ∈ [0, 2π].

in particular on the probabilistic characteristics of the physical parameters in the scene.
We propose an example probabilistic model that applies to high-frequency (e.g. X-band)
imaging of ground targets; other applications may dictate different priors.

Since knowledge of scattering response angle is often unknown or is highly sensitive to
small changes in radar operating parameters, we assume that the relative phase α of the
backscattered response between the two scattering centers is uniformly distributed between
−π and π (denoted U(−π, π)) throughout our analysis.

The conditional pdf of γ̃ conditioned on β and f , fγ̃|β,f , can be derived analytically using
the model in (4.10), but is omitted for brevity. Figure 4.4 shows two examples of fγ̃|β,f for
two sets of β and f . The pdfs have significant peaks at around the minimum and maximum
values of γ̃, and most of the probability is concentrated around these values. The general
shape of the conditional pdf can also be predicted from the vector diagram in Figure 4.1(b);
varying α corresponds to traversing around the circle, and for most values of α, γ will be
non-zero; this implies that most of the density will be located away form zero. Further
analysis will show that most error angles are in fact close to the minimum and maximum
error angles.

The conditional pdf, fγ̃|β,f , can be used to find the unconditional pdf of gamma, fγ̃ , by
integrating out the priors. fγ̃ summarizes the error introduced by an additional scattering
center in a resolution cell. Thus, to find the unconditional density, we need to define a prior
pdf for β and for f . Recalling that β relates to the physical height difference of interfering
scattering terms, its distribution describes the difference between the height of a desired
scattering center and that of an interfering one. We will assume a uniform pdf β ∼ U [−π, π],
to model cases in which layover (say, from trees) may occur at any height. A truncated
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Figure 4.4: Conditional pdf of γ̃ given f and β, for (a) f = 0.3 and β = 0.4π; (b) f = 0.7
and β = 0.8π.

Gaussian pdf β ∼ T N [−π,π](0, σ
2
β), where T N support(µ, σ) is a normal distribution with

mean µ and standard deviation σ truncated to finite support and renormalized, will also be
considered. This latter model might describe interfering scattering from other points on the
target of interest, in which case the height of the interfering scatterer is likely to be limited
by the height of the target (measured from the SAR slant plane). We assume no knowledge
of f , except its maximum value. This parameter will be modeled as a uniform prior,
f ∼ U [0, fmax]. Using these prior pdfs, we present results that predict height estimation
error performance for cases of interest.

Figure 4.5 shows examples of the conditional pdf of γ̃ given a fixed value of f , fγ̃|f , for the
two choices for the prior on β discussed above. These pdfs are found from the conditional
pdfs, fγ̃|β,f by integrating out β. The truncated normal pdf in Figure 4.5(b) is chosen such
that the standard deviation of the height difference between the desired and interfering
scattering center is 1 meter for a typical X-band radar scenario (λ = 0.029 m, ∆Ψ = 0.05◦),
where the elevation angles satisfy (4.1); for this parameter selection kI = 0.373 rad/m; so,
1 radian in Figure 4.5 corresponds to a height error of 2.68m.

We see that error angle probability in Figure 4.5 is concentrated about zero, instead of
the tails of the distribution support, as was the case for fixed f and β. This behavior is
exhibited over all f , an hence, assuming f to be a uniform prior, fγ̃ will have the same
general shape, as shown in Figure 4.8.

The maximum and RMS errors of γ̃ are summarized in Figure 4.6. Figure 4.6(a) displays
the RMS error angle with f ∼ U [0, fmax] for priors on β chosen to be uniform and truncated
normal; Figure 4.6(b) compares the maximum error to the RMS error angle for uniform β
and a given interfering scattering center relative magnitude, f . This figure demonstrates
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Figure 4.5: Conditional pdf of γ̃ for fixed f = 0.7 and two choices for the prior pdf of β.
(a) β ∼ U [−π, π]. (b) β ∼ T N [−π,π](0, 0.37).

how error angle is affected by the relative magnitude of the interfering scattering center.
As might be expected, RMS error for the case when the interfering scattering height can
be anywhere is larger than when the interfering scattering height is close to the dominant
scattering center height with high probability, and RMS error is monotonic increasing as a
function of the relative magnitude of the interfering scattering center.

Figure 4.6 provides a mechanism for analyzing IFSAR height error as a function of prior
distributions on the parameters in (4.10). For example, we see from Figure 4.6(b) that,
under these assumed prior probabilities on β and X-Band radar parameters, the RMS
height estimation error, 1

kI
σγ̃ , is less than 1 meter if fmax < 0.36.

The preceding analysis complements a traditional noise error analysis for standard IFSAR.
In particular, we can compare RMS height errors resulting from interference to those re-
sulting from noise as given in equation (4.7).

4.3.2 Height Error Detection from Pixel Magnitudes

In this section we consider a method of detecting instances of large height error by using the
pixel magnitudes corresponding to the two coherent SAR images. In particular, we analyze
the efficacy of the m̃ feature in identifying pixels for which the height estimation error is
high. Intuitively, the argument goes as follows. If A2 = 0 (i.e., there is no interference
scattering present), then |si| are equal for i = 1, . . . , F , and s̃i ≡ 1. Thus, one might
consider testing the (relative) magnitude difference between s̃1 and s̃2 as a way of detecting
interference, and thus detecting height errors.
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Figure 4.6: (a) RMS error angle for priors f ∈ U [0, fmax], β ∼ U [−π, π], and β ∼
T N [−π,π](0, 0.37), (b) Maximum error angle, RMS error angle for fixed f = fmax and
β ∼ U [−π, π], and RMS error angle for fixed f = fmax and β ∼ T N [−π,π](0, 0.37).

A detection test using m̃ would keep height estimates if the relative pixel magnitudes are
(nearly) equal, and reject height estimates otherwise; that is, the decision rule is

{

if |m̃| ≤ ηm, keep height estimate

if |m̃| > ηm, reject height estimate
(4.14)

where ηm is some prescribed threshold. If the test is effective, height error will be small for
accepted height estimates and large for the rejected estimates; that is, γ̃ is small when m̃
is small (recall that γ̃ is proportionally to the height estimation error).

We first consider this detection approach from a geometric perspective, using the vector
signal diagram in Figure 4.1(b) or Figure 4.2. Consider fixed values of f and β. We see
that the signal magnitudes |s̃1| and |s̃2| are nearly equal, m̃ ≈ 0, for values of α near 0 and
π; that is, when the two points are near the leftmost or rightmost parts of the dotted circle.
For these regions, however, γ̃ achieves its extremal values, so the height estimate error is
maximum. Thus, for fixed f and β, the proposed detection procedure does the opposite
of what we desire. However, our approach considers f and β over intervals of values; the
performance of the test in this case is discussed next.

Observing how f and β vary in Figure 4.3 also provides geometric insight. The test |m̃| ≤ ηm

corresponds to accepting all points in a vertical “ribbon” centered at m̃ = 0 in these figures.
An ideal test would be to accept all points for which |γ̃| < ηγ̃ , which is a horizontally-oriented
“ribbon”, but γ̃ cannot be measured; so, a test cannot be applied to it directly. For small
values of f , when |m̃| ≤ ηm, γ̃ will also be small. However, for larger values of f , γ̃ may
be very large even for small values of m̃. We investigate this observation and determine
if ηm can be set so that the probability of large error angle pixels will decrease when the
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threshold is applied.

The above insights can be made more quantitative by considering the joint pdf of m̃ and γ̃,
fγ̃,m̃. Figure 4.7 shows two versions of fγ̃,m̃ calculated for two choices of prior distributions
on f and β.
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Figure 4.7: Joint pdf of γ̃,and m̃, fγ̃,m̃ when (a) f ∼ U [0, 1] and β ∼ U [−π, π]; (b) f ∼ U [0, 1]
and β ∼ T N [−π,π](0, 0.37). Both pdfs peak at (0,0), but the figures are clipped near
γ̃ = m̃ = 0 to more clearly illustrate the pdf shapes.

A noteworthy feature of these pdfs is that most of their density is concentrated about a
region centered at (m̃, γ̃) = (0, 0). This suggests that the threshold filter introduced in
(4.14) will not be able to reject all pixels with large error angle, but a majority of the
accepted pixels will have error angles close to zero.

Figure 4.8 shows conditional pdfs of γ̃ overlaid on unconditional pdfs of γ̃. All are derived
from the distributions in Figure 4.7 and the conditional pdfs in Figures 4.8(a) and (b) are
conditioned on the events {ηm = 0.05}, and {ηm = 0.02}, respectively. In both cases, the
conditional pdfs have more probability concentrated at low error angles than the uncondi-
tional pdfs do. So, the probability that error angle is below a certain level will be higher
for the conditioned than for the unconditioned case. We note that approximately 70% of
pixels are rejected using ηm = 0.05 in the β ∼ U [−π, π] case, and about 53% are rejected
in the ηm = 0.02 and β ∼ T N [−π,π](0, 0.37) case.

As suggested by Figure 4.8, threshold filtering does improve RMS error performance, as
compared to the unfiltered case; furthermore, the value of a threshold and its effectiveness
are a function of the distribution on β. These hypotheses are supported by the RMS plots
shown in Figure 4.9 (a) and (b), which show the RMS error angle as a function of threshold
values and the percentage of points rejected versus threshold for the two conditional pdfs
in Figure 4.8. The RMS plots are monotonically increasing as a function of ηm, and ηm = 1
corresponds to having no threshold. Recall that for the X-band radar system considered,
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Figure 4.8: Comparison of fγ̃ and fγ̃|ηm
for f ∼ U [0, 1] and (a) β ∼ U [−π, π] and ηm = 0.05,

(b) β ∼ T N [−π,π](0, 0.37) and ηm = 0.02

kI = 0.373 rad/m, so RMS height errors with no thresholding are approximately 1.7 m for
the distribution in Figure 4.8(a) and 0.64 m for the distribution in Figure 4.8(b). In both
cases, a threshold of ηm ≈ 0.05 results in decreasing the RMS height error by one-half, and
eliminates around 25% and 75% of the pixel pairs, respectively.
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Figure 4.10 shows a ROC curve for a binary hypothesis testing problem, in which the
hypotheses are:

H0 : {|γ̃| ≥ ηγ}
H1 : {|γ̃| < ηγ} (4.15)

and (4.14) is the decision rule. The pdf used, fγ̃,m̃, was derived from β ∼ T N [−π,π](0, 0.37)
and f ∼ U [0, 1]. For the X-band radar considered previously, kI = 0.373 rad/m, so choosing
ηγ = 0.1119 results in testing for height errors less than 0.3 m, and ηγ = 0.1865 tests for
height errors less than 0.5 m.
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Figure 4.10: ROC curve showing probability of detection of the event {|γ̃| ≤ ηγ} versus
its probability of false alarm, using m̃ as a test statistic for the pdf fγ̃,m̃ derived with
β ∼ T N [−π,π](0, 0.37) and f ∼ U [0, 1].

This analysis shows that thresholding on m̃ does decrease the percentage of image pixels
with large height error. The effectiveness of this threshold depends on the prior distribution
of β, α and f . Given that 3D image quality is also a function of the number of pixels used
in reconstruction, the rejection rate should also be considered when choosing a threshold.

4.4 Height Error Detection from Three or More Coherent Images

The previous analysis considered the case in which two coherent SAR images were used to
estimate scattering height. In this section we consider the use of three or more SAR images.

One advantage of multiple images is that one can compute phase differences γi between
two or more image pairs. For the case of no interference scattering (A2 = 0), these phase
differences are all equal. Thus, one might consider a test for detecting interference, and,
hence, detecting cases in which height estimation error is large, by testing whether the phase
differences are equal, or, equivalently by testing whether the phases are linear. Such a test
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Figure 4.11: Vector diagram of resultant vectors at three elevation angles, (a) when the
phases of s̃1, s̃2, and s̃3 are perfectly linear; (b) when the phases are nonlinear.

would involve testing whether |γ2 − γ1| = |γ̃2 − γ̃1| > ηγ for some prescribed threshold ηγ ;
if so, the phase linearity hypothesis is rejected. More sophisticated tests could use a more
general combination of the phases and magnitudes from these F pixel values.

We submit that such tests have at best minor improvements over the detection test using
two SAR images that is described in the previous section. We provide a geometric argument
based on the vector diagram in Figure 4.11.

In this figure, we show the error vector diagram for F = 3, giving two image pairs (the
figure and argument is similar for F > 3), and for two values of α. When α = −β, then
γ̃1 = γ̃2, and the phase linearity hypothesis is accepted for any threshold value. However,
the resulting height estimate is in error by the amount 1

kI
γ̃1. In the second case, we have

γ̃1 = −γ̃2, so the phase is maximally nonlinear over all values of α; on the other hand,
the best linear phase fit effectively averages the phase errors γ̃1 and γ̃2, so the scattering
height estimation error is zero in this case. Thus, phase linearity is complimentary to angle
error γ̃ in the same manner as magnitude error m̃ is complimentary to angle error γ̃ for
the two-image case discussed in the previous section. We thus see that the phase linearity
detection test fails to detect large height errors for precisely those cases in which the F = 2
magnitude error test fails. As a result, the detection test using F = 3 is not expected to
have significantly better performance than the F = 2 case. This reasoning applies also for
F > 3. Given the additional (high) cost of collecting SAR data over several elevations,
it does not appear that this cost is justified in terms of reducing scattering height errors
caused by multiple scattering terms in a resolution cell.

The above arguments apply to interference scattering terms, and assume noiseless data. In
practice, of course, the additional SAR images can be used to reduce the effects of height
estimation error caused by noise. However, this reduction is modest; the height estimation
standard deviation decreases at a rate of

√
F .

When F ≥ 4, it is possible to simultaneously estimate the magnitudes and phases of both
scattering terms in (4.8) using Prony’s method.[53] There are some reasons to avoid a
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Prony-based approach, however. First, Prony’s method is very sensitive to noise, and the
height estimation error due to noise could exceed the estimation error due to bias from
interfering scatterers in standard IFSAR processing. Second, Prony’s method is sensitive to
modeling errors, and (highly) biased height estimates could result if the scattering response
is composed of three or more scattering centers, a case that could well happen in practice.
For these reasons, Prony’s method is not expected to provide reduced height errors for this
problem.

4.5 Example: Backhoe IFSAR Processing

In this section we present illustrative results of IFSAR processing to form a 3D recon-
struction of a ground vehicle. Specifically, we consider a construction backhoe as shown
in Figure 4.12(a). Using XpatchT scattering prediction software and a CAD model of the
backhoe, high resolution, fully-polarimetric SAR images are generated across the entire
“upper hemisphere” above the vehicle. Pairs of SAR images at the same azimuth and sep-
arated by 0.05◦ in elevation are used for coherent IFSAR processing, and are denoted as
IFSAR image pairs.

Figure 4.12 shows results in which 3D scattering center locations are estimated from IFSAR
image pairs, and then overlaid on a common coordinate system. The image pairs are
centered every 5◦ in azimuth from 0◦ to 355◦, and at elevations of 5n◦ and (5n + 0.05)◦

for n = 0, . . . 17,. Each SAR image has resolution of approximately 2in×2in, and each is
processed to extract pixels whose RCS is within 40dB of the global RCS peak value; the
height of each scattering center is estimated by applying equation (4.5) to each image pair.
Finally, pixels are mapped to a common coordinate system and plotted. In Figure 4.12(b),
all points are plotted, whereas in Figure 4.12(c), only points that pass a magnitude error
threshold test in (4.14) are plotted. The threshold, ηm in this case is chosen to be 0.01.
Points eliminated by the threshold test are shown in Figure 4.12(d).

These figures illustrate the effect that thresholding m̃ has on the 3D reconstruction of IFSAR
data. In Figure 4.12 (b), the shape of the backhoe can seen from the IFSAR generated
points, but the image is surrounded by many points that do not appear to correspond to a
part of the backhoe. Figure 4.12 (c), showing the image after threshold filtering, is sharper
than the image in (b), as many of the points not close to a backhoe surface are eliminated;
these points are shown in Figure 4.12 (d). It should be noted that the threshold ηm was
chosen qualitatively. If distributions on the priors f , β for the backhoe were known, a
more suitable threshold may be found using the analysis in section 4.3. It should also be
mentioned that Figures (b) and (d) are zoomed in and contain points outside the region of
view, which were not present in (c).
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(a)Backhoe facet model (b)No threshold filtering

(c)Threshold filtering (d)Rejected points from threshold filtering

Figure 4.12: 3D IFSAR reconstruction of a backhoe from two IFSAR images, with and
without threshold filtering. (a) Backhoe facet model (b) IFSAR image of all points 40 dB
from the global RCS maximum (c) IFSAR image of all points 40 dB from the global RCS
maximum and m̃ ≤ ηm = 0.01 (d) IFSAR image of all points 40 dB from the global RCS
maximum and m̃ > ηm = 0.01. In (b),(c),and (d), larger points correspond to scattering
centers with larger RCS values.

4.6 Conclusion

In this chapter, we investigated IFSAR 3D image reconstruction when there is more than
one scattering center per resolution cell. We developed a mathematical error model of two
scattering centers per resolution cell. This model consists of three parameters, all with
physical meaning with respect to the scattering centers in the resolution cell; furthermore,
this model can be represented pictorially as a complex vector diagram. Using this model,
a probabilistic description of height error (error angle γ̃) and normalized image magnitude
difference (m̃) was presented. RMS height error was analyzed for different distributions on
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model parameters. RMS analysis allows for comparison with IFSAR error introduced by
noise. A threshold test on the m̃ statistic was introduced, and its effectiveness in reducing
RMS height error was examined. This test did prove successful in reducing RMS height
error, but its effectiveness depends on the distribution of the error model parameters. When
setting a threshold, RMS height error and the percent of data rejected should be considered
simultaneously because of the trade off in 3D image quality between the two. Testing for
phase linearity using more than two elevation angles appears to offer little improvement in
reducing error over the use of two elevation angles and a threshold on m̃, and for more than
three elevation angles, Prony’s method could be used to estimate the complex value of each
scatter, but it is very sensitive to to deviations from an ideal noiseless mathematical model.
To conclude, the m̃ threshold test was used to filter XpatchT backhoe data. The image
with filtering appeared sharper than the one without filtering, showing that m̃ threshold
filtering is capable of improve 3D IFSAR image quality.
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5. LARGE BANDWIDTH SLOT ARRAY WITH WIDE

SCAN ANGLE

5.1 Introduction

The uses of Unmanned Air Vehicles (UAV) are likely to increase in the future. These vehicles
will be used for reconnaissance, surveillance as well as for mapping small areas. Because
the platform size is relatively small and useable space for large antennas is at a premium, it
is important to understand the relationship between viable antenna performance and radar
system requirements. In particular for this study, a broad band wide scan angle Synthetic
Aperture Radar (SAR) antenna array is of interest. The challenge is to design the array
so that it can be placed on a relatively flat surface underneath the belly of the vehicle.
Because of the directions that the SAR needs to operate relative to the array surface, wide
scan angle ability is desirable. In addition, since future SAR systems’ would benefit from
the highest resolution possible, as large a bandwidth as possible is desired. All of these
requirements present a difficult challenge for present day antenna manufacturing.

In this study, an antenna array design is determined that can provide the needed require-
ments for the desired radar system performance on such a UAV location. It can provide
a thin conformal shape for the antenna elements and feed structure. Based on possible
“behind the ground plane” components available in the next few years a one band design is
achievable. It also easily provides for extension into a two band design when small enough
components can be manufactured in the future.

In particular, the research efforts summarized here is to design an antenna array that will
operate from 45 degrees to 70 degrees from the normal of the plane of the flat array and
scan plus or minus 60 degrees in azimuth. Since it is intended to operate very close to
grazing of a surface, vertical polarization is of primary importance. The long term goal is
for it to operating over X and Ku bands simultaneously. The short term goal is to operate
over X band. It has been shown that a very good design can be achieved at X band and
still be able to accommodate the size of present day system components.

The following sections will briefly describe the approach and results for the antenna design.
In addition, an oral paper on some general findings regarding wide scan angle slot array
antennas were presented at the 2005 IEEE Antennas and Propagation Symposium and
Radio Science Meeting in Washington D. C. July 5 - 8, 2005 [54].

5.2 Approach

Many phased array applications employ dipole antennas over a ground plane, yet at high
elevation angles the dipole - ground plane element pattern is not omni directional in its
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principal plane. This characteristic is undesirable for wide scan angles (approaching 70◦).
A successful design concept has been developed for wide band arrays based on closely spaced
elements of dipoles [55]. So a simple approach would be to base the design on this type of
configuration and try and push the limits on the scan angle. It was found however, that it is
better to take advantage of the more desirable pattern of a slot element. Unfortunately, the
interaction of the dipoles and ground plane are different than that of slots over a ground
plane. The challenge for this design is then to use the same basic design philosophy to
achieve bandwidth, while taking into account the underlying physics defining slots.

The basis for analyzing the array performance in both cases is the well validated Periodic
Moment Method (PMM) code [56]. The scan impedance of the array is rigorously simulated
in an infinite periodic array using Moment Methods on the elements with a spectral greens
function of multilayered material slabs [57]. The design process entails studying the effect
that various parameters have on the active antenna impedance. This is accomplished by
determining the best combination of parameters by viewing the effect their size and material
composition has on the behavior of the impedance on a Smith Chart.

The design process starts by looking at the behavior of the element, with respect to its size,
in a thin dielectric “underwear” to isolate the elements from other layers. Inductance is
added between elements to promote field continuity. Next the effect of the spacing between
the ground plane and the element layer is determined. The dielectric constant is chosen
for the thickness desired. A dielectric layer is added over the array to provide impedance
stability over the desired range of scan angles. A permittivity value is chosen that causes the
angle behavior of the transmission coefficient to compensate for the scan angle projection
change. The goal is to position the impedance curve on the Smith Chart such a balun and
matching line can be added that provides an acceptable VSWR which in this case is 2:1
in the central region and lower than 3:1 over the whole design range. Finally, a thin hard
layer is added at the top for protection.

A thorough study of the parameters of interest was undertaken resulting in two prospective
designs that meet the goals of the antenna performance. A detailed presentation of this
study is under preparation [58]. The next section will briefly outline the final results for
the two designs. It should be remembered that these results are for an infinite array. A
finite array would need could have end effects that are usually minimized for a reasonable
number of elements. In addition, load passive elements can be added at the ends to further
reduce these effects.

5.3 Results

Figure 5.1 shows the top view and Figure 5.2 the side view for the so called large spacing
configuration of the array. The spacing for this design focused on achieving good perfor-
mance over one band of operation. At the center frequency, the slot elements have a length
of λ/3, width of λ/10 and a spacing of λ/3. They are etched onto standard thickness di-
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Figure 5.1: Top view of the one band design of the slot array

electric boards of relative permittivity 2.2 at 10 mils on both sides. Inductors are used to
connect the ends of each element to help provide field continuity. In this case, 10,000 pH was
found to be needed. The elements are spaced over the ground plane with a dielectric layer
of relative permittivity of 1.7 and thickness of 0.137λ. To achieve large scan angles with
stable impedance, a scan compensation dielectric layer is used with the dielectric constant
of 1.3 and a thickness of 0.093λ. A standard thickness protective dielectric layer of 30 mils
and relative dielectric constant of 3 is place on top. This results in a total thickness for the
array above the ground plane to be less than λ/4. The advantage of this design is that at
some frequencies of interest components will be available under the ground plane to feed
the array.

These slots are presently fed by connecting a 100 ohm 0.067λ long matching section going
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Figure 5.2: Side view of the one band design of the slot array
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Figure 5.3: Impedance of one band slot array scanned to 45 degrees. Normalized to 350
ohms on Smith Chart.
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Figure 5.4: Impedance of one band slot array scanned to 70 degrees. Normalized to 350
ohms on Smith Chart.
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Figure 5.5: Top view of the two band design of the slot array

into a line representing a 350 ohm impedance. The best way to implement this balun
transformer is under investigation.

Figure 5.3 and 5.4 shows the active scan impedance of the one band design at a scan angle
of 45 degrees and 70 degrees, respectively on Smith Charts normalized to 350 ohms. For
the 45 degree case, the resulting bandwidth is 2:1. For the 70 degree scan angle it is 1.5:1,
which is sufficiently wide for X-band.

Figure 5.5 shows the top view and Figure 5.6 the side view for the so called small spacing
configuration of the array. The spacing for this design focused on achieving good perfor-
mance over two contiguous bands of operation. At the center frequency, the slot elements
have a length of 0.187λ, width of 0.063λ and a spacing of 0.187λ. They are etched onto
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Figure 5.6: Side view of the two band design of the slot array

124



standard thickness dielectric boards of relative permittivity 3 at 30 mils on both sides. In-
ductors are used to connect the ends of each element to help provide field continuity. In this
case, 50,000 pH was found to be needed. The elements are spaced over the ground plane
with a dielectric layer of relative permittivity of 1.3 and thickness of 0.220λ. To achieve
large scan angles with stable impedance, a scan compensation dielectric layer is used with
the dielectric constant of 1.3 and a thickness of 0.093λ. A standard thickness protective
dielectric layer of 30 mils and relative dielectric constant of 3 is place on top. This results
in a total thickness for the array above the ground plane to be less than λ/3. The present
disadvantage of this design is that at the components that will be needed under the ground
plane to feed the array are still under development.

These slots are presently fed by connecting a 100 ohm 0.067λ long matching section going
into a line representing a 200 ohm impedance. The best way to implement this balun
transformer is under investigation.

Figure 5.7 and 5.8 shows the active scan impedance of the one band design at a scan angle
of 45 degrees and 70 degrees, respectively on Smith Charts normalized to 200 ohms. For
the 45 degree case, the resulting bandwidth is 2.4:1. For the 70 degree scan angle it is 1.9:1,
which is sufficiently wide for X and Ku-bands.

5.4 Conclusion

A prospective design for a large bandwidth antenna array with a wide scan angle capability
is discussed. The array is composed of closely spaced slot elements in several layers of
dielectric material. The use of slot elements helps the array achieve a 70 degree scan angle
and still maintain bandwidth stability. It is shown that by varying the size of the elements
the bandwidth can be adjusted to meet requirements. In the larger spacing design, the
band width is appropriate for one band use, with the advantage that soon to be available
electronic components will be available. In the smaller spacing design, the bandwidth is
appropriate for two band use, with the disadvantage that it the electronic components
are still being developed. In both case, the above the ground plane antenna array uses
commonly available materials and produces a low profile conformal configuration.
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Figure 5.7: Impedance of two band slot array scanned to 45 degrees. Normalized to 200
ohms on Smith Chart.
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Figure 5.8: Impedance of two band slot array scanned to 70 degrees. Normalized to 200
ohms on Smith Chart.
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6. ROUGH SURFACE SCATTERING

6.1 Introduction

The performance of an ATR system can be strongly affected by the clutter environment in
which the system is operating, particularly when used for stationary targets. For microwave
sensors, understanding backscatter properties of the clutter environment is critical for de-
signing ATR algorithms that remain robust in the presence of clutter. Physically-based
models for clutter properties enable variations with a variety of sensor parameters to be
investigated easily, if a reasonable model can be created. One such clutter geometry for
which effective scattering models exist is that of a randomly rough surface; both terrain and
sea environments can be approximately modeled by this geometry. Figure 6.1 illustrates an
example ATR system, and demonstrates that clutter returns from the ground surface are
ubiquitous in observations of ground-based targets. In addition, the possibility of interac-
tions between target scattering and the ground (for example, in multi-path target returns)
must be considered to produce accurate simulations of target signatures. Such interactions
are not considered here, but have been explored in other work by the authors of this chapter
[59]-[62].

Considering rough surface clutter alone, two classical models for scattering from rough
surfaces are available in the high- and low-frequency limits [63]. More recently, a “small-
slope” approximate (SSA) theory [64] has been proposed that bridges these two limits.
Studies of clutter properties predicted from this theory are useful in testing and improving
ATR systems for targets in the presence of clutter.

The lowest order SSA term can be regarded as second order in surface “quasi-slope” [65], and
has a form similar to the PO approximation but multiplied by an alternate function of the

Source

Target

Randomly
Rough Surface

Clutter

Desired Return Signal

Figure 6.1: Example ATR observation including rough surface clutter
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Figure 6.2: Geometry of problem considered

surface permittivity and of the incident and scattering angles. A recent paper [66] investi-
gated the accuracy of the lowest order SSA through comparison with numerical simulations
and found inaccuracies in the physical optics limit. However, reference [64] demonstrates
that the SSA reproduces the PO theory when higher order SSA corrections (at third and
partial fourth order) are included in the scalar, hard-boundary scattering problem. The first
(third order) correction to the lowest-order SSA has a more complicated form involving a
quadruple integral for computation of average cross sections. Averages of the first correc-
tion term can also be computed through a Monte Carlo simulation with a deterministic
surface small slope approximation [67]-[68]. The complexity of both of these approaches,
however, has limited the number of studies reported including higher-order SSA terms in
the electromagnetic, penetrable surface problem.

Here a simplified form for the first SSA correction term is presented for penetrable surfaces
under the assumption of a Gaussian random process surface with an isotropic Gaussian
correlation function. While these surfaces are admittedly simple compared to many natural
surface structures, the isotropic Gaussian correlation function surface remains a widely-used
model in many applications. Surfaces in this case are described simply by the rms height h
and correlation length l parameters.

6.2 Formulation

Figure 6.2 illustrates the scattering geometry considered. Define the z direction as normal
to the mean surface plane, and pointing into free space. For a plane wave in free space
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Figure 6.3: Backscattering Results for kh = 1, kl = 6

approaching from direction ki = x̂kix + ŷkiy + ẑkiz , and for scattering measurements in
direction ks = x̂ksx + ŷksy + ẑksz, the simplified expression for the first SSA correction term
is:

σ
(c)
SSA = − k2

sz

π|kdz |
Re {i (gSPM) [A1 + A2 − A3]} (6.1)

where

A1 =
∞∑
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]
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In these equations, σ
(c)
SSA is the first correction to the lowest order SSA average normalized

bistatic scattering coefficient, kd = ki − ks = x̂kdx + ŷkdy + ẑkdz , kdρ =
√

k2
dx + k2

dy, Im

is the modified Bessel function of order m, and W (kρ) = h2l2

4π exp
(
−k2

ρl
2/4
)

refers to the

power spectrum of the surface. The factors gSPM and g
(c)∗
SSA are functions of the surface

permittivity, radar frequency, polarization, and the incident and scattering angles, and are

specified in [68]-[69], while the factor g
(c)∗
m is the m-th azimuthal Fourier series coefficient

of g
(c)∗
SSA. The factor DI [63] arises in the PO theory with an isotropic Gaussian correlation
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Figure 6.4: Backscattering angular functions for “long-wave” surfaces

function surface. Note the original quadruple integral is replaced by the double sum and
single integration in the term A1 for the isotropic Gaussian correlation function surface.
The sum over m in the term A1 is found to converge rapidly (typically needing no more

than 32 terms) due to the limited harmonic structure of g
(c)
m , and the integrations Bn,m also

are well behaved due to the Gaussian functions involved.

A MATLAB-based code was developed to implement these equations, and results were
found to match data from a previous Monte Carlo higher-order SSA simulation [67] well.
The script is available upon request to the authors. As an example, Figure 6.3 illustrates
HH and V V normalized backscattered cross sections versus observation angle for the case
kh = 1, kl = 6, with k = 2π/λ the electromagnetic wavenumber at wavelength λ. The
surface relative permittivity was set to 4+ i in these computations. Results from the lowest
order SSA (SSA1) and the lowest order plus the first correction (SSA2) are compared, and
demonstrate that the correction is significant for this case, particularly in HH polarization
at the larger observation angles. Results from repeated computations with the same surface
permittivity and with varying kh and kl at observation angles of 10 and 70 degrees were
obtained. Results showed that that the correction is significant when kl becomes larger
independent of kh, or when kh approaches 30% of kl for smaller kl values. The correction
term is generally larger in HH polarization.

6.3 Large scale approximation

To further investigate simplification of the SSA in the PO limit, an approximation to the
original SSA2 expressions was developed. The complete SSA correction term was included
in the analysis (i.e. including the third and partial fourth order terms [65]). Using a Taylor

series about the origin (g
(c)
SSA(kx, ky) ≈ Akx + Bky), the resulting SSA expressions simplify
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considerably. The final expression for the complete correction term has a form similar to
the PO approximation, but again with a modified multiplying angular function. The entire
higher-order SSA result then also is similar to the PO approximation, and comparison of
the resulting total angular function to that from PO shows the relationship between the
two methods. For perfectly conducting surfaces, tests showed the complete SSA angular
function to be identical to the PO form within the numerical accuracy of the comparison,
confirming that the SSA and PO are identical in this limit. For penetrable surfaces, the
functions are identical near the specular region, but distinct in other angular regions. Figure
6.4 illustrates a comparison of the PO, SSA1, and approximated SSA2 “angular functions”
versus observation angle for backscattering with surface relative permittivity 4 + i. Note
the approximated SSA2 brings SSA1 closer to PO results for the near-normal region, but
differences remain at larger angles. These relationships are difficult to interpret given the
uncertainty in forming the PO angular function for penetrable surfaces [63]. Due to these
relationships, questions regarding the validity region of the PO approximation can poten-
tially be rephrased as questions regarding the accuracy of a first order Taylor approximation

to the function g
(c)
SSA.

6.4 Publications

Project results were published in two conference papers [70]-[71], an M. S. thesis [72], and
a journal article [73]. After graduating in 2003, Michael Gilbert accepted a position with
the Naval Surface Warfare Center in Dahlgren, VA.

6.5 Conclusions

This effort has developed a useful model for predicting the influence of terrain clutter on
ATR systems. The model developed is applicable over a wide range of surface properties,
and enables expected properties of terrain clutter to be investigated. Codes for implement-
ing these models are available from the authors. Further information on the results achieved
is available in [72]-[73].
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7. STAP/SFAP BASED ADAPTIVE ANTENNAS

7.1 Space-Time Adaptive processing (STAP)

In STAP an N-length digital filter or tapped-delay line with adjustable weights is placed
behind each antenna element. With L antenna elements and an N taps per element, the
STAP-equipped array has LN −1 degrees of freedom available. Theoretically, up to LN −1
independent radio frequency interference (RFI) sources can be nulled providing a significant
advantage over a conventional adaptive array which is limited to L-1 spatial degrees of
freedom. However, this is only obtained for RFI with 0% bandwidth. Wideband interference
is known to limit adaptive array performance and was the original motivation for introducing
the weighted tapped delay lines . The effect of wideband RFI on conventional single-tap
adaptive array performance has been studied in the past and it has been demonstrated
that multiple spatial degrees of freedom (DOF) are consumed by wideband RFI where
increasing the RFI power, bandwidth, or both will increase the DOF consumed. Lately,
STAP performance in wideband multi-path environments is of high interest. Typically,
wideband signals are attributed to the consumption of ”N“ degrees of freedom in STAP.
Under this effort, it was demonstrated that a strong direct-path wideband RFI can consume
more than ”N“ degrees of freedom in a multi-tap STAP wherein ”wideband“ is defined as a
bandwidth equal to the sample rate or inverse tap delay of the STAP processor. Thus, the
effect of a strong wideband RFI direct-path source on STAP performance can be similar to
that of a dispersive multi-path environment.

A five-element linear array of ideal isotropic elements with constant half-wavelength spacing
as shown in Figure 7.1 is used for the example results. The quiescent array pattern is also
shown in Figure 1 for reference. The signals received by the array are processed in the time
domain by a seven tap STAP with tap delays equal, T0, to 1/32 µs. A desired signal with
a 20 MHz bandwidth flat power spectral density and input SNR of -20 dB centered at 2004
MHz is incident from broadside ( θ = 0◦). A single direct-path RFI interference source is
incident from θ = 30◦.

Consider RFI bandwidths of 0, 10 kHz, 8 MHz, and 32 MHz with fractional bandwidths of
∆f
fc

= 0%, ∼ 0%, 0.4%, and 1.6%. At input INR levels of 10 and 50 dB, the eigenvalue
magnitudes (in decreasing order) for a 7 tap STAP are listed for the various bandwidths
in Table 7.1. For a CW or 0% bandwidth, the signal is completely correlated between the
various taps and elements and only one eigenvalue (first column) is greater than 0 dB. The
remaining eigenvalues are due to thermal noise. The principal eigenvalue magnitude for the
CW signal is equal to the signal power times the number of taps and elements, i.e.

|λCW | = P × L × N = 350 → 25.44 dB, (7.1)

where P is the CW signal power. The next largest eigenvalue is over ten orders of magnitude

133



θ

d
2 L1

Sensor Locations

−50 0 50
−30

−25

−20

−15

−10

−5

0

5

10

θ (deg)

|A
(θ

)|
 (

dB
)

Antenna Geometry Quiescent Array Pattern

Figure 7.1: Antenna configuration and quiescent antenna pattern at 2004 MHz

Table 7.1: Eigenvalue Magnitudes (dB) for 7 Tap STAP

10 dB INR 50 dB INR
CW 10k Hz 8 MHz 32MHz CW 10k Hz 8 MHz 32MHz
25.4 25.4 22.9 17.0 65.4 65.4 62.9 57.0
-110.1 -33.5 21.0 17.0 -70.1 6.5 61.0 57.0
-110.1 -100.1 14.5 17.0 -70.1 -60.6 54.5 57.0
-110.9 -100.1 2.1 17.0 -71.0 -70.2 42.1 57.0
-111.0 -100.6 -14.4 17.0 -71.0 -70.2 25.6 57.0
-111.7 -111.2 -34.5 17.0 -71.7 -71.2 5.5 57.0
-111.7 -111.2 -58.8 17.0 -71.7 -71.2 -18.8 57.0
-112.6 -111.7 -97.5 -20.4 -72.6 -71.7 -57.5 19.6
-112.6 -111.7 -114.1 -27.2 -72.6 -71.7 -74.1 12.8
-113.2 -112.6 -116.5 -37.6 -73.2 -72.6 -76.5 2.4
-113.2 -112.6 -116.5 -50.6 -73.2 -72.6 -76.5 -10.6
-114.1 -113.5 -117.2 -65.8 -74.1 -73.5 -77.2 -25.8
-114.5 -113.5 -117.2 -83.6 -74.1 -73.5 -77.2 -43.5
-114.6 -114.2 -118.2 -104.6 -74.5 -74.2 -78.2 -64.6
...

...
...

...
...

...
...

...

less. If the input INR is increased to 50 dB, the eigenvalue also increases by 40 dB as shown
in Table 7.1.

For the 10 kHz bandwidth, the second eigenvalue is still three orders of magnitude less than
0 dB (noise level eigenvalue) and about seven orders of magnitude larger than the third. A
small fraction of the RFI energy is represented by the second eigenvalue-eigenvector pair.
When the INR is increases to 50 dB, the second eigenvalue increases to 6.5 dB (right hand
table). Once an eigenvalue exceeds the noise level, the adaptive weights react-suppressing
the RFI energy of the eigenvalue-eigenvector pair. It is interesting that the small fractional
bandwidth RFI can consume a second degree of freedom. Does this bandwidth exceed the
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Table 7.2: Eigenvalue Magnitudes (dB) for Single Tap STAP

10 dB INR 50 dB INR
CW 10k Hz 8 MHz 32MHz CW 10k Hz 8 MHz 32MHz
17.0 17.0 17.0 17.0 57.0 57.0 57.0 57.0
-142.9 -93.0 -34.9 -22.8 -102.9 -53.0 5.1 17.2
-143.7 -142.2 -95.3 -71.2 -104.2 -104.7 -55.3 -31.2
-147.5 -144.9 -144.5 -124.6 -108.2 -106.7 -108.5 -84.6
-152.6 -148.1 -144.8 -144.2 -118.2 -118.3 -111.5 -108.0
...

...
...

...
...

...
...

...

narrow-band limit? Table 7.2 shows the eigenvalue magnitudes for the spatial covariance
matrix (single-tap STAP) at 10 and 50 dB input INR. At the 10 kHz bandwidth, only a
single eigenvalue exceeds the noise eigenvalues for both the 10 and 50 dB INR cases thus
meeting the narrow-band definition. Multiple eigenvalues are excited in the STAP at 10 dB
input INR for the 8 and 32 MHz bandwidths. In the single-tap STAP, multiple eigenvalues
are present at the 50 dB INR level only.

We observe that a small finite bandwidth RFI excites multiple eigenvalues in the STAP
space-time covariance matrix. In the example, the RFI fractional bandwidths are all less
than 1.6%. However, the 1.6% bandwidth occupies 100% of the sampled spectrum. This
”wideband“ signal excites a full N eigenvalues at low INR levels consuming N degrees of
freedom. In the conventional array, at low INR levels, the wideband signal still meets the
narrow-band criteria. Increasing the INR to 50 dB consumes additional spatial degrees
of freedom in the single tap STAP. Similarly, in the multi-tap STAP increasing the INR
level of the ”wideband“ RFI excites more than ”N“ eigenvalues. At 50 dB INR, Table 7.1
illustrates that 10 eigenvalues are active for the 32 MHz bandwidth. Thus, a direct-path
”wideband“ RFI source can consume more than ”N“ degrees of freedom similar to the
dispersive multi-path effects observed by in other studies.

Figure 7.2 shows the eigenvalue distribution and output INR for a CW RFI and RFI band-
widths of 8 MHz, 16 MHz, and 32 MHz for input INR levels between -20 and 80 dB. In
Figure 7.2, the CW RFI excites only a single eigenvalue over the complete input INR range
whereas the number of eigenvalues excited by the finite bandwidth sources are dependent
on both interference bandwidth and power. Note that the wideband RFI excites “N” or
7 eigenvalues at low input INR levels. When the input INR exceeds 60 dB, the wideband
source excites more than 10 eigenvalues. The output INR plot illustrates for low levels of
input INR the output interference power increases linearly with the input INR. As the first
interference eigenvalue magnitude approaches the noise eigenvalue, the adaptive weights
react and start to suppress the interference. Increasing the input INR further drives the
output INR lower. For the CW case, theoretically, the INR suppression continues indefi-
nitely. In practice, numerical precision limits the suppression. Here, the precision limit for
the CW bandwidth is reached when the input INR is 55 dB. This is due to the numerical
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Figure 7.2: Results are shown for RFI bandwidths of CW, 8 MHz, 16 MHz, and 32 MHz

precision of MATLAB on the PC platform. For the finite bandwidth RFI cases, the preci-
sion limits of MATLAB are not reached. Additional eigenvalues become active before the
principle or first eigenvalue magnitude hits the precision limit. As the additional eigenval-
ues become active, the STAP weights suppress the associated energy causing the observed
oscillation in output INR. This behavior is similar to that observed in single-tap adaptive
arrays.

The effects of reference tap selection on the performance of STAP was also studied. It was
shown that though the output SINR if not affected the tap used as the reference tap, the
center tap should be used as the reference tap for minimum distortion of the desired signal.

7.2 Space-Frequency Adaptive processing (SFAP)

Space-frequency adaptive processing (SFAP) is an alternate approach to STAP where the
time domain signals received by various antenna elements are transformed to the frequency
domain using the discrete Fourier transform. The constrained minimization is then carried
out in the frequency domain to suppress interfering signals. Under ideal conditions the
two approaches yield the same performance. In SFAP, however, one can process each
frequency bin independently. This leads to sub-optimum performance but can decrease the
computation cost significantly in that one has to manipulate only L x L matrices. Also,
one can make up for the lost performance by increasing the number of frequency bins.
Thus narrowband SFAP is a very attractive approach for interference suppression in digital
receivers.

Under this research effort, the performance of a space-frequency adaptive processor receiv-
ing a spread spectrum like communications signal in strong RFI environment was studied.
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The interfering scenario consisted of wideband as well as narrowband jammers. It was
shown that for these type of interference scenarios, one can improve the performance of
narrowband SFAP by windowing the time domain samples before transforming the samples
to the frequency domain. The reason for the improved performance is that the windowing
helps localize narrowband interferers to a few frequency bins, which in turn improves the
performance of SFAP. Other researchers have reported the similar observation. However,
the SFAP mathematical model used in their study is based on averaging the signal-to-
interference-plus-noise ratio and interference-to-noise ratio at the output of various fre-
quency bins. The average output ratios do not account for overlapping of samples in SFAP
and do not provide true performance estimate of SFAP. The sample overlapping is very
important in SFAP implementation and performance. We developed a better mathematical
model for SFAP performance prediction. The mathematical model is based on the previous
work of Godara in that the equivalent time domain weights are found. We have extended
the model to include the window function. It was shown that the equivalent time domain
weights depend on the output sample. The mathematical model was used to study the per-
formance of SFAP. The study clearly indicated the need for sample overlapping in SFAP.
It was shown that 20% to 25% sample overlapping is sufficient. This is a lot less than the
present practice.

7.2.1 SFAP Mathematical Model

Let the antenna array consist of L elements. The signals received by these antenna elements
are down converted to baseband and digitized. A block of N samples from each antenna
element are multiplied by a window function, wi, i = 1, 2 . . . N and are Fourier transformed
to the frequency domain for space-frequency adaptive processing. The frequency domain
samples for the mth block are then given by

x̃l(k,m) =

N∑

n=1

wnxln(m)e−j 2π
N

(n−1)(k−1) ,
l = 1, 2, . . . , L
k = 1, 2, . . . , N

(7.2)

where xln(m) are the corresponding time domain samples for the lth antenna element. Note
that index k in (7.2) denotes the frequency bin, and index m denotes the block number.
Using vector notation, (7.2) can be rewritten as

x̃l(k,m) = fT (k)xl(m) = xT
l (m)f(k) (7.3)

where,

f(k) =








w1

w2 e−j 2π
N

(k−1)

...

wN e−j 2π
N

(N−1)(k−1)








(7.4)
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and,

xl(m) =








xl1(m)
xl2(m)

...
xlN (m)








. (7.5)

In (7.3) superscript T denotes transpose. These frequency domain samples are used to
estimate the spatial covariance matrix. Let M frequency domain samples be used to estimate
the covariance matrix for the kth bin. Then the lith element of the covariance matrix R̃(k)
is given by

(R̃(k))li =
1

M

M∑

m=1

x̃∗
l (k,m)x̃i(k,m) , l, i = 1, 2, . . . , L (7.6)

where superscript ∗ denotes complex conjugate. Substituting (7.3) in (7.6), one obtains

(R̃(k))li = fH(k)[
1

M

M∑

m=1

x∗
l (m)xT

i (m)]f(k)

= fH(k)R(l, i)f(k) (7.7)

where R(l, i) is the N x N time domain covariance matrix between antenna elements l and i.
Thus knowing the time domain covariance matrix, one can directly calculate the elements
of the frequency domain covariance matrix for various frequency bins. Let the adaptive
weights be selected to minimize the output power under a single constraint. Then the
steady state weights for the kth frequency bin are then given by

h̃(k) =
R̃−1(k)ũs(k)

ũH
s (k)R̃−1(k)ũs(k)

, k = 1, 2, . . . , N (7.8)

where ũs(k) is the constraint vector for the kth bin and H is the Hermitian or conjugate
transpose operator. In this study, ũs(k) is selected to be [0, 0, 01000]T , i.e. the bin output is
minimized subject to the constraint that the weight for one of the antenna elements is kept
at unity. Note that with this choice of the constraint vector, one does not need to know the
angle of arrival of the desired signal. However, it does not guarntee a fixed response in the
desired signal direction. For strong desired signal (signal level is significantly higher than
the thermal noise) the adaptive antenna weights may be selected to suppress the desired
signal. In the case of weak desired signal, this constraint vector is a good choice since the
presence of desired signal does not affect the adaptive antenna weights. Nevertheless, ( 7.8
) can be used for any choice of the constraint vector.
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Using (7.8), the output of the kth bin for the mth block is given by

ỹ(k,m) =

L∑

l=1

h̃l(k) x̃l(k,m) , k = 1, 2, . . . , N . (7.9)

The output of various bins are Fourier transformed to obtain the time domain output. The
ith time domain output for the mth data block is then given by

y(i,m) =
1

wiN

N∑

k=1

ỹ(k,m) ej 2π
N

(i−1)(k−1) , i = 1, 2 . . . N . (7.10)

Note that window compensation (1/wi) has been applied to the time domain output. This
window compensation is required to maintain the desired signal level at the array output.
Otherwise, the desired signal level can vary significantly from one sample to the next. Using
(7.2) and (7.9) in (7.10), one obtains

y(i,m) =
1

wi

L∑

l=1

N∑

n=1

wnxln(m)
1

N

N∑

k=1

˜̃
lh(i, k)e−j 2π

N
(n−1)(k−1) , (7.11)

where,
˜̃
hl(i, k) = h̃l(k)ej 2π

N
(i−1)(k−1) . (7.12)

One can rewrite ( 7.11 ) as

y(i,m) =

L∑

l=1

N∑

n=1

xln(m)hln(i) (7.13)

where,

hln(i) =
wn

wiN

N∑

k=1

˜̃
hl(i, k)e−j 2π

N
(n−1)(k−1) . (7.14)

Note that ( 7.13 ) also represents an equivalent time domain system where hln(i) are the
equivalent time domain weights and m is the output sample number such that m ≥ N . The
equivalent time domain system can be represented as

y(i,m) =

L∑

l=1

N∑

n=1

xl(m − (n − 1))hln(i) . (7.15)

One can use (7.15) to evaluate the SFAP performance. In theory, one should be able to
use any time domain sample from a given block to study the SFAP performance. However,
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since the equivalent time domain weights depend on the sample selected, the performance
varies from one sample to the next. As will be shown later, the performance is the worst
when the equivalent time domain weights are selected based on the first few or the last few
time domain samples and then improves quickly as one moves away from the end samples.
In practice, overlapping of the time domain samples is carried out to avoid the degradation
in these end samples. As a rule of thumb 50% overlapping is carried out; i.e. out of N
samples from a block, only N/2 samples are used and the rest are recovered by overlapping.
This overlapping increases the SFAP implementation cost. We have shown that one does
not need to carry out 50% overlapping. Instead 20-25% overlapping may be sufficient.

Next, assuming that the incident signals on the antenna array can be modeled as wide sense
stationary processes, the mean power at the array output is given by

Ps(i) =
1

2
E{y2(i,m)}

=
1

2
hH(i) R h(i) , (7.16)

where R is LN x LN array covariance matrix in the time domain and h(i) is the equivalent
time domain weight vector. Note that index i is used to indicate the sample dependency
of the weight vector. Assuming that the various signals incident on the antenna array are
uncorrelated with each other and with the thermal noise, (7.16) can be used to estimate
the mean output power for individual signals. Next, one can calculate the expected signal-
to-interference plus noise ratio (SINR) and interference-to-noise ratio (INR) at the array
output. In the following result, these metrics along with the desired signal level are used
to evaluate the performance of SFAP. Note that these metrics are directly related to the
performance of a digital spread spectrum receiver.

7.2.2 Sample Results

A linear uniform antenna array consisting of seven elements is used in the study. All
elements are assumed to be isotropic antennas with no coupling. One of the antenna
elements (center element) is located at the coordinate origin. The interelement spacing is
selected to be λ

2 ( 0.075 m). In this study, the constraint vector is selected to keep the
center element weight fixed at unity. These antenna elements receive RF signals centered at
2.004 GHz. The signals are down-converted to baseband and sampled at a rate of 32× 106

samples/second (complex sampling).

In a typical spread spectrum system, the desired signal angle of arrival can vary. In this
study, the angle of arrival of the desired signal is varied between −90◦ to 90◦. The desired
signal has a spectrum similar to that of a rectangular pulse with a bandwidth of 20 MHz
and pulse-width (chip width) of 1

10µs. In the ”spread” representation, the pulse represents
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Table 7.3: The Interference scenario

Jammer Frequency Bandwidth θ
# (MHz) (MHz) (degrees)

1 2000.4 24 65
2 2000.4 24 -75
3 2000.4 24 80
4 2002.4 0.0 -45
5 1994.3 0.0 -25
6 1990.1 0.0 -15
7 2010.3 0.0 0
8 2004.3 0.0 10
9 1995.1 0.0 20
10 2007.3 0.0 30
11 1998.4 0.0 -40
12 2003.4 0.0 45
13 2008.4 0.0 50

a modulating chip sequence operating at a sub-carrier rate of 10 MHz. The desired signal is
uncorrelated with the thermal noise in each channel. The thermal noise in various channels
is also assumed to be uncorrelated with each other. The thermal noise is assumed to have
flat power spectral density over the sampling bandwidth of 32 MHz. The signal to noise
(SNR) of the desired signal at each antenna element is assumed to be -20 dB. Note that
this SNR is before the correlator.

In addition to the desired signals, some interference is also incident on the antenna array.
Three of the interfering signals are wideband signals (24 MHz bandwidth); whereas the other
interfering signals are narrowband signals. The interference to noise ratio (INR) of each
interfering signal at each antenna element is assumed to be 40 dB. Thus, each interfering
signal is 60 dB above the desired signal level. Table 7.3 shows the angular locations, center
frequency and bandwidth of various interfering signals. Note that the first three interfering
signals are wideband signals. The wideband interfering signals also have flat power spectral
density.

The signals received by the 7-element antenna array were processed in the frequency domain
using a 128-bin SFAP. Three different window functions; namely, uniform (rectangular),
Hamming and Blackman were used to weight the time domain samples before transforming
them to the frequency domain.

Figure 7.3 shows the desired signal power level and SINR at the adaptive array output1

when the interference scenario consists of three wideband RFI sources. The angle of arrival
of the desired signal is 0◦ (broadside to the array). Performance for three window functions,

1For digital spread spectrum receivers, which are based on correlation, both quantities are important. One
needs good SINR and the signal level should be maintained.
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Figure 7.3: Output signal power and output SINR for 128 bin SFAP versus sample number
(index) in the presence of three wideband interfering signals. The desired signal is incident
from broadside direction.
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namely uniform, Hamming and Blackman windows, is shown. The performance with respect
to sample index is plotted. Remember that the equivalent time domain weights depend on
the sample number of the 128-sample block. Ideally, the performance should be independent
of the sample number. However, due to all the processing being performed on the data
samples, one can see that the beginning and the end samples have lower SINR. For the
uniform window function the degradation is minimal; whereas, for the Blackman window
there is significant degradation. However, for 80% or more of the samples the performance
is similar. Thus, one does not need 50% overlapping to obtain the optimum performance.
Overlapping of 20% to 25% should be sufficient.

In the above example, the uniform window function performed better than the Hamming
window as well as the Blackman window. This is because all the incident RFI sources were
wideband in nature. Figure 7.4 shows the performance of the adaptive system when the
interference scenario consists of the three wideband plus the first four CW RFI sources
in Table 7.3. All other parameters are the same as before. Again, one can draw the same
conclusions as before; i.e. the performance for the middle 80% of the samples is very similar.
Thus, one does not need to carry out 50% overlapping. Instead 20 % to 25 % overlapping
should be sufficient. Another observation to be made from these plots is that the Blackman
window is performing (output signal and SINR level) much better than the other two window
functions. Thus we observe that in the presence of wideband plus narrowband signals, the
Blackman window function is a better choice. We will demonstrate this further under many
interference scenarios. For Blackman window, the output signal power at the beginning
and end of the block is very high; whereas the output SINR is quite low. As mentioned
earlier, for good performance the output signal level should not change with sample index
and the output SINR should be high. Thus, these samples should be recovered by sample
overlapping. In the remaining examples, the performance is calculated using the equivalent
time domain weights corresponding to the middle sample (i = N

2 in (7.16) ). Remember,
by using 20% to 25% overlapping of the samples, one can achieve the same performance for
all samples.

Figure 7.5 shows the output INR of the adaptive array versus the number of CW interference
sources. In addition to the CW sources, three wideband interference sources are also incident
on the antenna array. The performance for the three window functions (uniform, Hamming
and Blackman) is shown. Remember the input INR for each RFI source is 40 dB. Note
that in the absence of CW interference (only wideband RFI is present), the output INR is
very low. The output INR increases with the addition of CW interference. In the case of
uniform window function the output INR increases very rapidly once the number of CW
interference exceeds two. In the presence of six or more CW interfering signals, the output
INR is 10 dB or higher, which may not be desirable. For Blackman window function, the
output INR is less than -20 dB even in the presence of ten CW interfering signals. Thus,
using the Blackman window function, one can achieve better interference suppression. For
the Hamming window function, the interference suppression is somewhere in between the
uniform window function and the Blackman window function.
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Figure 7.4: Output signal power and output SINR for 128 bin SFAP versus sample number
(index) in the presence of three wideband plus four CW interfering signals. The desired
signal is incident from broadside direction.
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(θd). Wideband interfering signals (broken arrows), CW interfering signal (solid arrows).
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For a communication system to operate properly, one needs to suppress the interfering sig-
nal while receiving the desired signal without significant degradation in the signal-to-noise
ratio (SNR). To that end, Figure 7.6 shows the output SINR of the adapted antenna versus
the angle of arrival of the desired signal. Again, the output SINR for the three window
functions is shown when the interference scenario consists of three wideband sources only,
three wideband plus two CW sources, three wideband plus four CW sources, and three wide-
band plus six CW sources, respectively. In this figure, the location of wideband sources are
marked by broken arrows; whereas, the location of CW sources are marked by the solid
arrows. Note that in the presence of wideband interfering signals only, the three window
functions, as expected, have similar performance. In the case of uniform window function,
the presence of CW interfering signals degrades the adaptive array performance. For the
Blackman window function, the performance is almost unaffected by the presence of CW in-
terfering signals. The Hamming window function performs better than the uniform window
function, but not as well as the Blackman window function, and the reason for this is the
sidelobe level associated with the two window functions. The sidelobe levels of a Hamming
window function are not as low as those of the Blackman window function. Therefore, for
narrowband jammers, a significant amount of energy leaks into the other frequency bins.
Nevertheless, windowing (other than uniform) the time domain samples helps in improv-
ing the performance of SFAP in the interfering scenario consisting of wideband as well as
narrowband jammers, and the Blackman window function seems to be a good choice.

7.3 Multipath Effects

The platform generated jammer multipath can limit the performance of adaptive antennas.
We carried out a study to characterize the effects of jammer multipath on GPS AJ systems.
Initially, we used an antenna array of seven half wavelength dipoles in our study. Six of the
dipoles were uniformly distributed along a circle of 3.75 inch radius; whereas the seventh
element was inside the circle. The middle element was displaced approximately an inch
from the center of the circle. A moment method solution was used to calculate the in situ
radiation patterns of individual elements in the presence as well as in the absence of a 20
inch square flat plate over 1555 MHz to 1595 MHz in 2 MHz steps. The flat plate was
placed 40 inches away from the center of the array.

Two configurations with the flat plate were analyzed. In the first configuration, the antenna
array faces an edge of the plate; whereas in the second configuration, the antenna array is
in the boresight direction of the plate. Note that for the second configuration the flat plate
will cause strong multipath. These calculated radiation patterns were Fourier transformed
to obtain the in situ impulse response of various antenna elements along the incident signal
directions. These antenna responses were next used to study the performance of a space-only
and a 5-tap STAP based AJ system in the presence of a single strong (interference to noise
ratio approximately 60 dB) wideband jammer of 22 MHz bandwidth, when the incident
signals are sampled at the rate of 32 Mega samples per second. It was found that in the
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absence of the flat plate, space-only as well as STAP steered a single deep null in the incident
jammer direction. A certain number of degrees of freedom were consumed in nulling the
jammer. In the presence of the flat plate, the adaptive antennas had a tendency of placing
multiple nulls (one along the jammer direction and the other along the plate reflected signal
direction). This was especially true for broadside plate. The number of degrees of freedom
consumed in nulling the jammer increased. The presence of the jammer multipath affected
space-only processing more than 5-tap STAP. These results areas expected, and helped
us in verifying our computer simulations. Adaptive antennas mounted on more complex
platforms (an aircraft) were considered next.

For complex platforms, we used an antenna array of seven circularly polarized patches in
our study. The antenna array was mounted on an F-16 aircraft. A computer code named
NEWAIR was used to calculate the volumetric patterns of various antenna elements in the
L1 frequency band in 2 MHz step size. The computer code was developed at OSU-ESL in
the early eighties and has been used extensively to analyze antennas mounted on various
aircrafts. The computer code uses Uniform Theory of Diffraction (UTD) to calculate the
radiation pattern of individual elements. In this computer code, mutual coupling between
various elements is not included directly in the pattern calculation. Therefore, the mutual
coupling between antenna elements was ignored. Each element of the antenna array was
modeled by two pairs of magnetic dipoles. The two pairs are orthogonal to each other, and
were fed with a 90 degree phase difference to generate circular polarization. The spacing
between the elements of a pair was selected to be approximately half a wavelength at 1575
MHz.

We used these volumetric patterns of the 7 antenna elements to study the performance of
a space-only, a 5-tap STAP and a 128-bin SFAP based adaptive antenna in the presence
of multiple strong wide band jammers. Jamming scenarios consisting of up to five wide
band jammers were considered. The elevation angle of the incident jammers was kept
between −30◦ to +20◦ from the horizon. Each jammer had a bandwidth of 22 MHz. For
each jamming scenarios, twenty five independent trials were performed. The finite impulse
response of various antenna elements in the incident signal direction was convolved with the
incident signals to simulate signals received by various antenna elements. It was found that
the 5-tap STAP and the 128-bin SFAP performed better than space-only processing. 128-
bin SFAP performed as well as or better than 5-tap STAP. The results of this study have
been included in a technical report entitled, ”Effects of platform generated multipath on
GPS AJ systems.” The report has limited distribution and can be obtained by contacting,
Dr. Inder Gupta, who was PI for this effort. For reference it is Ohio State University
ElectroScience Laboratory Technical Report 741718-2, June 2003.

7.4 Graduate Students

The research effort described above was carried out by two gradate students, Dr. Thomas
D. Moore and Mr. Matthew L. Rankin who worked under the supervision of Dr. Inder
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Gupta. Dr. Moore received his Ph.D. from the Ohio State University in December 2002,
and Mr. Rankin received his M.Sc. in Electrical and Computer Engineering from the Ohio
State university in June 2004.

149



8. MINIATURE UWB ANTENNA

8.1 Introduction

Many target recognition applications require ultrawide bandwidth signals for extracting
various target signatures associated with different geometry and material features of the
target. In this study a small low profile and UWB antennas that operates from 50 MHz
to 2000 MHz is investigated. Using conventional designs to cover such a vast frequency
range with a single antenna would require an aperture size and profile which are too large
for practical applications. Antenna miniaturization techniques such as dielectric [79, 80]
or reactive loading [81, 82] are commonly used to increase the antenna’s electrical size
without increasing its physical size. However, each of these miniaturization techniques
by itself faces important performance trade-offs for large miniaturization factors. In this
chapter, a hybrid approach that involves both dielectric and reactive loading is used to
maximize the miniaturization factor while minimizing any adverse effects. Our approach
to miniaturizing an UWB antenna involves the use dielectric material on both sides of
the antenna (substrate and superstrate) to maximize the miniaturization factor for a given
dielectric constant [83]. In addition, the thickness of the dielectric material is tapered
to suppress dielectric resonance oscillation (DRO) modes and surface waves as well as to
maintain high-frequency performance [80, 83]. To maximize the miniaturization factor
while minimizing the negative effects of dielectric loading, reactive loading or the artificial
transmission line (ATL) concept [81] is also used. This allows us to minimize the dielectric
constant which results in less impedance reduction, a minimal antenna weight and reduces
possible surface wave effects. The following sections will discuss some of the issues associated
with dielectric loading, the implementation of reactive loading for the spiral antenna and
the miniaturization limit for the spiral antenna.

8.2 Spiral Antenna Miniaturization via Material

Dielectric material loading for the purpose of spiral miniaturization has its limits [83].
Specifically, while the low frequency gain is usually improved by dielectric material load-
ing [80, 83], high frequency gain tends to decrease if high contrast material is used. To
demonstrate this, we chose to simulate a four-arm spiral antenna that is 2” wide and 0.5”
high above an infinite ground plane, with dielectric material the same size of the antenna
sandwiched between. Specifically, we extract the broadside circular-polarized gain at two
different frequencies and plot them as a function of dielectric constant (Figure 8.1). As can
be seen, there exists an optimum value of dielectric constant of the loading material, above
which high frequency gain starts to decrease.
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Figure 8.1: Effect of loading material’s dielectric constant on spiral antenna gain.
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Spiral Antenna Miniaturization Limit

The observation made above illustrates the difficulties associated with aggressive miniatur-
ization. Besides the lowering of the high frequency gain, we also observe diminishing return
in terms of increasing the low frequency gain as more aggressive miniaturization is applied.
These difficulties can be explained by a model describing the spiral antenna operation. In
terms of wave propagation, the spiral is modeled as a transmission line structure that is
wrapped in a spiral shape. In terms of radiation, we chose to model the spiral antenna as a
continuous set of concentric loops of different sizes. Each loop is associated with a radiation
resistance that can be easily calculated from the geometry and is modeled as transmission
line loss. This lossy-transmission line model for spiral antenna can accurately predict the
antenna impedance over the entire frequency range [81]. Based on this model, we examine
the effect of miniaturizing a spiral antenna by enforcing a slow-current condition on each
loop separately and then re-calculate each loop’s radiation resistance. The impact of minia-
turization can be observed in both impedance and radiation pattern, as shown in Figure 8.2.
It is observed while miniaturization can successfully shift the resonance toward lower fre-
quency; the overall level of radiation resistance is lowered as well. It is further noticed
that the slow-wave current rings have a lower directivity at resonance. Specifically, issues
induced by aggressive miniaturization include impedance issue as well as pattern issue, and
should be dealt with carefully. By applying Chu-Harrington’s small antenna limit from a
more global perspective, we also identify the limit of broadband spiral miniaturization to
be approximately 65%, if no broadband complex matching is applied.

Embedded Inductive Loading

Based on the transmission line model for spiral antenna mentioned above, we proceed to
miniaturize the spiral antenna by means of reactive loading as demonstrated in [81]. That is,
we reduce the phase velocity of the guided wave by enhancing the inherent inductance and
capacitance of the spiral antenna structure. This allows for additional wave slow down with
negligible increase in the weight. In [81], this was accomplished by using lumped surface
mount inductors placed in series with the spiral arm and lumped surface mount capacitors
placed in parallel with the adjacent spiral arm (see Figure 8.3). This approach works well
as long as the number of lumped elements remains small so that the losses associated with
soldering and the elements inherent resistance is minimal. Since our miniature antenna
uses dielectric loading in conjunction with reactive loading there is no need for any lumped
capacitors which reduces the number of elements considerably. Nevertheless, it was found
that for aggressive loading the use of lumped elements leads to an excessive amount of
ohmic loss. Therefore, implementing reactive or inductive loading using lumped elements
is not practical and alternative implementations must be used.

Another common way to achieve inductive loading is through meandering of the spiral
arm [82]. However, the meandering approach does not result in a purely inductive loading.
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Figure 8.2: Effect of miniaturization on the spiral antenna. m is the miniaturization factor
defined as λair/λcurrent. (A) Broadside directivity of a current ring. (B) Radiation resistance
of a current ring as a function of frequency and miniaturization. (C) Radiation resistance
profile of a spiral when m=1 and circumference is 2 λair. (D) Radiation resistance profile
of a spiral when m=4 and circumference is 2 λair. Although in this case resonance ring
is formed closer to the spiral center, meaning resonance is easier to achieve, its radiation
resistance level is low.

Figure 8.3: Illustration for a reactive loaded spiral using lumped L and C elements.
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A better way to achieve inductive loading is by coiling the spiral arm such that the arm
resembles a solenoid. This is accomplished by using standard PCB fabrication to create a
coil by alternating a series of traces on the top and bottom layers of a board as illustrated
in Figure 8.4. The traces are then connected using vias to form square loops. The amount
of inductive loading is then primarily a function of the number of turns (pitch) and the
loop area (arm width x board thickness) which can be varied to achieve the desired minia-
turization. Figure 8.4 shows an example of this type of loading for a 6” diameter square
spiral. For this design the pitch is 60 mil, the trace width is 30 mil and the via diameter
is 20 mil. The board is FR4 with a measured ǫr = 4, tanδ = 0.015 and a thickness of
92 mil. This antenna also features multiple growth rates and a center section that does
not have the inductive treatment. Both of these features help to provide a transition from
the untreated section to the heavily inductive section. Figure 4 shows a comparison of the
measured gain for the untreated and treated 6” spirals with the untreated spiral shown in
the inset. The spiral with the inductive treatment was able to achieve a gain of -15 dBic
at 146 MHz compared to only 266 MHz for the untreated spiral. This is a considerable
improvement and was achieved with minimal increase in weight and profile. It is remarked
that for future work the transition needs to be made more gradual to reduce reflections
from the transition region. Doing so will improve the gain within 250MHz to 500MHz.

Figure 8.4: Left: Inductive treatment for a 6” square spiral (top layer of the board) with
3D illustration of a section of the coiled arm. Right: measured realized total gain for a
square spiral in free space with inductive treatment.

Initial Results for the Integration of Dielectric and Inductive Loading

The real challenge in realizing a miniature antenna using both dielectric and reactive loading
is the integration into a single antenna. The antenna in Figure 8.5 consists of a square spiral
shown in Figure 4 sandwiched between two tapered dielectric pieces. Both the superstrate
and substrate have ǫr = 9 and are 0.625” and 0.75” thick respectively. The measured
realized gain of the antenna is shown in Figure 8.5 and is -15 dBic at 142 MHz. This
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means that the untreated cavity-backed spiral would need to be 2.35 times larger to achieve
the same gain at this frequency. However, the dielectric is rather ineffective for further
miniaturization. This is most likely a result of the coiled spiral arms not being embedded
in the ǫr = 9 dielectric material. Since the inductive treatment confines more of the field
within the FR4 material, it is important to embed the spiral arms within the ǫr = 9 dielectric
material to maximize its affect. Improvements based on this embedding will be discussed
at the conference. Additionally, we will address the possibility of overcoming the 65% or
factor of 2.85 miniaturization limit.

Figure 8.5: Initial results for the integrated 6-inch miniature spiral antenna.
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